
UNIVERSITY OF THE PHILIPPINES

WORK FLUCTUATION AND IRREVERSIBLE ENTROPY IN

A QUENCHED XY HEISENBERG MAGNET

by

FRANCIS A. BAYOCBOC, JR.

A Master’s Thesis Submitted to the

National Institute of Physics

College of Science

University of the Philippines

Diliman, Quezon City

As Partial Fulfillment of the Requirements

for the Degree of

Master of Science in Physics

June 2015



CERTIFICATION

This is to certify that this master’s thesis entitled, “WORK FLUCTU-
ATION AND IRREVERSIBLE ENTROPY IN A QUENCHED
XY HEISENBERG MAGNET”and submitted by Francis A. Bay-
ocboc, Jr. to fulfill part of the requirements for the degree of Master of
Science in Physics was successfully defended and approved on 23 May 2015.

FRANCIS NORMAN C. PARAAN, Ph.D.
Thesis Adviser

ERIC A. GALAPON, Ph.D.
Thesis Reader

The National Institute of Physics endorses acceptance of this master’s
thesis as partial fulfillment of the requirements for the degree of Master of
Science in Physics.

ROLAND V. SARMAGO, Ph.D.
Director

National Institute of Physics

This master’s thesis is hereby officially accepted as partial fulfillment of
the requirements for the degree of Master of Science in Physics.

JOSE MARIA P. BALMACEDA, Ph.D.
Dean

College of Science

i



WORK FLUCTUATION AND IRREVERSIBLE ENTROPY IN
A QUENCHED XY HEISENBERG MAGNET

by Francis A. Bayocboc, Jr.

MS Thesis, National Institute of Physics
University of the Philippines Diliman
June 2015

Classification*: PUBLICATION (P)
*Invention or Creation (I), Publication (P), Confidential Information (C)

Available to the general public YES

Available only after consultation with author/adviser NO
for thesis/dissertation

Available only to those bound by nondisclosure or NO
confidentiality agreement

FRANCIS A. BAYOCBOC, JR.
Student

FRANCIS NORMAN C. PARAAN, Ph.D.
Thesis Adviser

ii



Para sa iyo na nangangarap at nagsusumikap para sa Inang Bayan.

iii



iv



Acknowledgments

First and foremost, I would like to thank my thesis adviser, Dr. Fran-
cis Paraan, without whom this thesis would not have been possible. His
dedication and keen interest above all his overwhelming attitude to help his
students had been solely and mainly responsible for completing my work.

I am grateful to Dr. Eduardo Cuansing, Jr. for all those one-on-one lec-
tures at Ateneo during my first months of my M.Sc. program, and for those
chats about research. I consider him my second adviser.

I am thankful to the all the members of the Structure and Dynamics Re-
search Group for all the time and experience you’ve shared with me.

Lastly, I am ever thankful to my supportive family. To Mama, Papa, and
Charlene, I love you so much!

v



This work was supported by the University of the Philippines Of-
fice of the Vice President for Academic Affairs through Grant No.
OVPAA-BPhD-2012-05, and the University of the Philippines Diliman
Office of the Chancellor and Office of the Vice Chancellor for Re-
search and Development through Project No. 141420 PhDIA. The author
has likewise received a scholarship from the Department of Science and
Technology - Accelerated Science and Technology Human Resource
Development Program (DOST-ASTHRDP).

vi



ABSTRACT

WORK FLUCTUATION AND IRREVERSIBLE ENTROPY IN
A QUENCHED XY HEISENBERG MAGNET

Francis A. Bayocboc, Jr.
University of the Philippines, 2015

Adviser:
Francis Norman C. Paraan,
Ph.D.

In this thesis, we study the emergent thermodynamics associated with
an arbitrary quench in the Heisenberg XY model by calculating the work
fluctuation and the irreversible entropy produced. For the fluctuation in
the work done, an exact expression is obtained and is shown to exhibit non-
analytic behavior as the pre-quench transverse field and anisotropy parameter
cross quantum critical points. On the other hand, the irreversible entropy
is obtained by calculating the difference between the average work done and
an effective free energy change. We emphasize on the effect of the anisotropy
parameter on the irreversible entropy, adding to previous works done on the
Transverse Field Ising Model.

PACS: 05.70.Ln (Nonequilibrium and irreversible thermodynamics), 05.30.-d
(Quantum statistical mechanics), 75.10.Pq (Spin chain models)
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Chapter 1

Introduction

In this thesis, we study the emergent thermodynamics associated with an in-

stantaneous changing of a parameter of a many-body system referred to as a

quantum quench. The term "quantum quench" was coined by Calabrese and

Cardy [2] in 2006 to describe an instantaneous change of a system’s Hamil-

tonian parameters, such as magnetic field, and was first studied theoretically

by Altman and Auerbach in 2002 [3] and by Sengupta et al. in 2004 [4]. A

many-body system is prepared in an eigenstate (usually the groundstate) of

the initial Hamiltonian H(λ0) with parameter λ0. The Hamiltonian param-

eter is then changed from λ0 to λ1 in a time scale much smaller than the

response time of the system to the variation. This quenching of parameters

takes the system out of equilibrium and the evolution of the system is dic-

tated by the new Hamiltonian H(λ1). Interesting situations are encountered

when the parameter quench are done across critical points, when universal

phenomena [5–7], quantum revivals [8–10], and singular behavior may be

observed [11–14].

These quantum quenches may also be interpreted as an irreversible ther-

modynamic process for a many-body quantum system. It is then natural to

characterize quench protocols by thermodynamic quantities such as the work

done on the system after an instantaneous change of parameters. In general,

the state of an isolated system immediately after a quench is an excited state
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of the post-quench Hamiltonian and unlike in quasistatic processes, measure-

ments of the system energy after a quench may not be the same. This results

in a work done that has statistical fluctuation over different measurements

and is described by a probability distribution function p(W ). In this thesis,

the more accessible characteristic function of the probability density which

takes the form of a two-time correlator [15, 16] will be calculated. The statis-

tics of work done, i.e. average work done and fluctuations in the work done,

is given by the cumulants of the probability density function. For quench

protocols that are done at finite temperatures, the average work done can be

related to a dissipated work or an irreversible entropy by using the Jarzynski

equality [17]. This irreversible entropy is a measure of the irreversibility of

the protocol. Calculations of the emergent thermodynamics after a quan-

tum quench has been studied before such as the work statistics [11] and the

irreversible entropy [12] after a field quench in the quantum Ising model,

the statistics of work done in quenches in the normal phase Dicke model

[18], universal scaling after quenches near a quantum critical point in the

sine-Gordon model [19, 20], and the work statistics across quantum critical

points in the Heisenberg XYZ model [21].

Recently, an experimental measurement of the irreversible entropy was

done for an isolated spin system. This was proposed as a physical quantity

that may be used to establish the thermodynamic arrow of time in quantum

systems [22]. This measurement is based on interferometric measurements

proposed and implemented in quantum systems by the groups of Dorner and

Batalhão [23, 24]. Using 13C atoms in a chloroform molecule liquid sample,

Batalhão et al. realized a nuclear spin-1/2 system that is initially prepared

in a thermal state at inverse temperature β. For the forward process, the sys-

tem is quenched by a transverse time-modulated radio-frequency field from

an initial state of the initial Hamiltonian H0. On the other hand, for the

backward process, the system is driven by a time reversed Hamiltonian from

an equilibrium state of the final HamiltonianH1. The work probability distri-
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bution for the forward and backward processes were measured by employing

NMR spectroscopy and Ramsey-like interferometric scheme [23, 24]. The ir-

reversibility of the process is then calculated by the using the Tasaki-Crooks

fluctuation relation [16, 25, 26]

The specific physical system that will be studied in this thesis is described

by the Heisenberg XY model in a transverse magnetic field h with anisotropy

parameter γ. This anisotropy parameter is a measure of the difference in the

spins states’ interactions in the x- and y-directions. The transverse field and

anisotropy parameters are the quenching parameters. The XY model was

first introduced by Lieb, Schultz, and Mattis [27] to describe antiferromag-

netism for linear spin chains with nearest-neighbor interactions. Aside from

Lieb et al., the model was also solved extensively by Barouch et al. in [28, 29]

where the Liouville equation was solved exactly and the spin correlators were

studied. The eigenstate, partition function, specific heat, and susceptibility

was also solved by Katsura [30]. The Heisenberg XY model is a quantum crit-

ical model which also contains the quantum Ising model. The phase diagram

of this model is characterized by two Quantum Phase Transitions (QPT): the

QPT that belongs to the universality class of the One-Dimensional Quantum

Ising Model and that of the universality class of the critical Heisenberg spin

(XX model) [31].

Although many studies have been done regarding quantum quenches in

the full Heisenberg XY model, none of these works have considered an exten-

sive analysis of the statistics of work done. These works have focused on the

dynamics of the correlation functions [2, 32], Loschmidt echo [6, 9], defect

production [33, 34], and entanglement measures [9, 35] after a quench in the

XY model. Also, previous works on the statistics of work done have been per-

formed only for field quenches along the Ising line of the XY model [11, 12].

This thesis aims to calculate an exact expression for the work statistics in

a quantum critical model. Specifically, this work investigates the effects of

the anisotropy parameter on the fluctuation of work done and on the irre-
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versible entropy produced. Accordingly, this work completes the study of

the statistics of work done of quenches in the full parameter space of the XY

model.

This thesis is divided into chapters. An outline of the diagonalization of

the XY Hamiltonian by three consecutive transformations: Jordan-Wigner,

Fourier, and Bogolyubov, together with the calculation of the characteristic

function from the probability distribution is presented in Chapter 2. The

analysis of the quantum quench in the XY model is presented in Chapter 3

where calculation of the statistics of work done, i.e. average work done and

work fluctuations, from the characteristic function G(u) of the probability

distribution function p(W ) of the work is done. Calculation of the average

work done for an arbitrary quench at finite temperature is presented in Chap-

ter 4 together with analyses of the irreversible entropy ∆Sirr produced during

specific quench protocols. A summary of major results ends this thesis.
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Chapter 2

Theoretical Background

2.1 The XY model

The spin−1
2

XY model was proposed by Lieb, Schultz, and Mattis in 1961

[27] to describe antiferromagnetism for linear spin chains, with each spin

interacting only with its nearest neighbor. For a chain of N spin−1
2

particles

in a transverse magnetic field h, the quantum mechanical Hamiltonian of the

XY model is given by

H = −J
2

N∑
j=1

[(
1 + γ

2

)
σx
j σ

x
j+1 +

(
1− γ

2

)
σy
jσ

y
j+1 + hσz

j

]
. (2.1)

Here J is the energy-scale parameter, σα
j , with α = x, y, z, are the spin

Pauli matrices describing the spin operators at site j of the one-dimensional

spin lattice, and γ is the parameter characterizing the difference in spin

interactions along the x and the y axes. For positive values of J , the system

is ferromagnetic; otherwise, the system is antiferromagnetic. Periodicity is

imposed to the model: σα
N+1 = σα

1 . For γ = 0, the XY model reduces to the

isotropic XX model; while for γ = 1, the one-dimensional Tranverse Field

Ising model is recovered.

The phase diagram of the XY model is parametrized by the anisotropy

strength γ and the transverse magnetic field strength h, with symmetries γ →
−γ and h→ −h. At zero temperature, the phase diagram is characterized by
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γ

hc=1 h

1
Ising

BM 
circle

Figure 2.1: Phase diagram of the XY model. Red solid lines are critical
lines, γ is the anisotropy parameter, and h is the transverse magnetic field.
The horizontal dashed line corresponds to the quantum Ising model and the
dashed circular curve is the Barouch-McCoy circle where the ground state is
a product state of localized spin states [1].

two Quantum Phase Transitions. The first one belongs to the universality

class of the isotropic XX model at anisotropy γ = 0 and magnetic field

|h| < 1. This is a line that separates strong ferromagnetic order in the

x−direction (γ > 0) and in the y− direction (γ < 0). The other one belongs

to the universality class of the one-dimensional Transverse Ising model at

magnetic field |h| = 1. This is a transition from a region of ferromagnetic

order (|h| < 1) to a region of paramagnetic order (|h| > 1). At these two

phase transitions, the energy spectrum of the XY model is gapless [31, 36].

2.1.1 Diagonalization of the Hamiltonian

Diagonalization of the ferromagnetic XY Hamiltonian was first carried out by

Lieb et al. in 1961 [27] for the case of zero magnetic field and by Niemeijer in

1967 [37] for the case where a magnetic field along the z axis is present. The

diagonalization involves a succession of transformations of the Hamiltonian in

Eq. (2.1) to spinless fermionic operators, to momentum space operators, and

to quasi-particle fermionic operators. We shall consider the ferromagnetic

6



case and set J = 1:

H = −1

2

N∑
j=1

[(
1 + γ

2

)
σx
j σ

x
j+1 +

(
1− γ

2

)
σy
jσ

y
j+1 + hσz

j

]
. (2.2)

The first transformation involves a mapping from spin operators σj to spinless

fermionic operators ψl by means of a Jordan-Wigner transformation given by

σ+
j =

j−1∏
l=1

(
1− 2ψ†

lψl

)
ψj σ−

j =

j−1∏
l=1

(
1− 2ψ†

lψl

)
ψ†
j . (2.3)

The spin operators σ+
j (σ

−
j ) are called the raising (lowering) operators and

the spinless fermionic operator ψl follows the usual anti-commutation rule

{ψα, ψ
†
β} =δαβ

{ψα, ψβ} = {ψ†
α,ψ

†
β} = 0,

where anti-commutation is given by {A,B} = AB + BA. In terms of the

raising and lowering operators σ±, the x-, y-, and z-Pauli spin matrices at

site j are given by

σx
j = σ+

j + σ−
j iσy

j = σ+
j − σ−

j σz
j = [σ+

j , σ
−
j ], (2.4)

where the commutation is defined as [A,B] = AB − BA. The Hamiltonian

in terms of the raising and lowering operators is

H = −1

2

N∑
j=1

[
σ+
j σ

−
j+1 + σ−

j σ
+
j+1 + γ

(
σ+
j σ

+
j+1 + σ−

j σ
−
j+1

)
+ h[σ+

j , σ
−
j ]

]
. (2.5)

Substituting the Jordan-Wigner transforms in Eq. (2.3) reformulates the

Hamiltonian in terms of the spinless fermion operators ψj

H = −1

2

N−1∑
j=1

(
ψ†
jψj+1 + ψ†

j+1ψj + γψ†
jψ

†
j+1 + γψj+1ψj

)
+ h

N∑
j=1

ψ†
jψj −

hN

2

+
N∏
j=1

(1− 2ψ†
jψj)

2

(
ψ†
Nψ1 + ψ†

1ψN + γψ†
Nψ

†
1 + γψ1ψN

)
. (2.6)
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The Hamiltonian in equation (2.6) is quadratic in operators ψj. The coeffi-

cient
∏N

j=1(1 − 2ψ†
jψj)/2 in the second line of the Hamiltonian in equation

(2.6) distinguishes the two sectors of the theory, namely, the model with even

and odd number of particles N . For even N , the value of the coefficient is

+1, while −1 for odd N . With this configuration, the appropriate boundary

condition for an even numbered model is antiperiodic while periodic for odd

numbered model:

ψj+N =− ψj if N = even

ψj+N =ψj if N = odd,

We should note that the effect of the boundary terms (second line of equation

(2.6)) or the effect of the parity of the number of particles in the model is

negligible when we consider calculations in the thermodynamic limit in the

next chapter. The Hamiltonian can be written as

H = −1

2

N∑
j=1

(
ψ†
jψj+1+ψ

†
j+1ψj +γψ

†
jψ

†
j+1+γψj+1ψj −2hψ†

jψj

)
− hN

2
(2.7)

while taking note of the parity ofN and the appropriate boundary conditions.

From this point forward, we shall consider the case of odd numbered model.

We will now perform a mapping of the model from real space to momen-

tum space by means of a symmetric Fourier transform given by

ψj =
eiπ/4√
N

N−1∑
q=0

ei
2π
N

qjϕq j = 1, . . . , N, (2.8)

ϕq =
e−iπ/4

√
N

N∑
j=1

e−i 2π
N

qjψj q = 1, . . . , N − 1, (2.9)

where q is the momentum associated with the particle at site j. Note that

the operators ϕq follow the anticommutation relation

{ϕ†
q, ϕq′} = δqq′ , (2.10)
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and it can be easily seen that ϕ†
qϕq = ϕ†

−qϕ−q. The products of the real space

operators ψj are given in terms of the momentum space operators ϕq by
N∑
j=1

ψ†
jψj+1 =

N−1∑
q=0

ei
2π
N

qϕ†
qϕq,

N∑
j=1

ψ†
j+1ψj =

N−1∑
q=0

e−i 2π
N

qϕ†
qϕq, (2.11)

N∑
j=1

ψ†
jψ

†
j+1 =− i

N−1∑
q=0

e−i 2π
N

qϕ†
−qϕ

†
q,

N∑
j=1

ψj+1ψj =i
N−1∑
q=0

ei
2π
N

qϕqϕ−q, (2.12)

and
∑

j ψ
†
jψj =

∑
q ϕ

†
qϕq. Note that we have used the identity

N∑
j=0

ei
2π
N

j(q−q′) = Nδq,q′ . (2.13)

The Hamiltonian in momentum space is

H =
1

N

N−1∑
q=0

{
ϕ†
qϕq

[
h− cos

(
2π

N
q

)]
+
γ

2
sin

(
2π

N
q

)[
ϕqϕ−q + ϕ†

−qϕ
†
q

]}
− hN

2
.

(2.14)

The mapping from an interacting theory to a non-interacting one will be

done by means of a Bogolyubov transformation given by

ϕq =χq cos θq + χ†
−q sin θq, (2.15a)

ϕ†
−q =− χq sin θq + χ†

−q cos θq, (2.15b)

where χ±q are fermionic quasi-particle operators. We can think of the trans-

formation given by equations (2.15) as just a rotation of the operators ϕ±q

by an angle θq given by

tan
(
2θq

)
=

γ sin
(
2π
N
q
)

h− cos
(
2π
N
q
) . (2.16)

Substituting equations (2.15) to the Hamiltonian in equation (2.14) and using

the Bogolyubov angle expression in equation (2.16) to remove the off-diagonal

terms gives us the final form of the Hamiltonian in terms of the quasi-particle

fermionic operators χ±q:

H =
N−1∑
q=0

ϵ(q)

{
χ†
qχq −

1

2

}
. (2.17)

9



ϵ(q) is the energy spectrum of the XY model given by

ϵ(q) =

√[
h− cos

(
2πq

N

)]2
+ γ2 sin2

(
2πq

N

)
. (2.18)

The energy spectrum ϵ(q) of the model becomes gapless at the phase tran-

sition given by the critical magnetic field line at |h| = 1 and by the XX line

at γ = 0 and |h| < 1.

2.1.2 Ground state and Partition function

The lowest energy state of the model is a state with no quasi-particle:

χq|Ψ0⟩ = 0, (2.19)

when we let an annihilation operator act on the state |Ψ0⟩, the product would

be zero since there is no quasi-particle to annihilate to begin with. Thus, the

ground state energy is given by

EGS = −1

2

N−1∑
q=0

ϵ(q). (2.20)

In terms of the spinless fermions, the ground state |Ψ0⟩ is given by

|Ψ0⟩ =
N−1∏
q=0

(
cos θq + sin θqϕ

†
qϕ

†
−q

)
|0q, 0−q⟩, (2.21)

where |0q, 0−q⟩ is a state with no physical fermions.

For a system with fixed number of particles and is at thermal equilibrium

with a heat bath of temperature T , the canonical partition function is given

by

Z = Tr e−βH =
∑
n

e−βEn , (2.22)

where β = 1/kBT is the inverse temperature, kB is the Boltzmann constant,

and H is the Hamiltonian of the system. The sum in the second equality is

a sum over all eigenstates n with corresponding energy En.

10



The eigenstates of the Hamiltonian in equation (2.17) are |0q⟩ which cor-

responds to unoccupied state q and |1q⟩ which corresponds to an occupied

state q in momentum space. Thus, the partition function becomes

Z =
∑
n=0,1

⟨nq| exp
{
−β

N−1∑
q=0

ϵ(q)

[
χ†
qχq −

1

2

]}
|nq⟩

=
N−1∏
q=0

∑
n=0,1

exp

{
−βϵ(q)

[
n− 1

2

]}
.

The summation over n becomes a hyperbolic cosine and the final form of the

partition function is

Z = 2N
N−1∏
q=0

cosh

[
βϵ(q)

2

]
. (2.23)

2.2 Probability distribution function

In this section, we shall consider the probability distribution function of the

work done by a time-dependent Hamiltonian. We shall follow a derivation

due to Talker et al. [15].

Calculation of the work done by an external force involves two measure-

ments of the system energy: the energy of the initial state at t = 0 and the

energy after some time tf . A system is prepared in a thermal state described

by a density matrix

ρ(0) =
e−βH(0)

Z(0)
, (2.24)

where H(0) is the Hamiltonian at t = 0, β is the reciprocal temperature, and

Z(0) = Tr exp[−βH(0)]. A measurement of the energy of the initial state

would give the eigenvalue En of H(0). The probability of getting En is given

by

pn =
e−βEn

Z(0)
. (2.25)

After this measurement, the state state is now found at the corresponding

eigenstate |φn⟩ of H(0) satisfying H(0)|φn⟩ = En|φn⟩. The state |φn⟩ would

11



then evolve according to

|φ̃(t)⟩ = U(t)|φn⟩ (2.26)

where the evolution operator U(t) is due to the Hamiltonian H(t). A second

measurement at time tf would then yield an eigenvalue |Ẽm⟩ with corre-

sponding eigenstate |φ̃m⟩ of H(tf ). The probability of measuring |Ẽm⟩ is

given by

pm|n =|⟨φ̃m|φ(tf )⟩|2

=|⟨φ̃m|
[
U(tf )|φn⟩

]
|2. (2.27)

Thus, the probability of measuring both En and Ẽm is given by

pm|npn = |⟨φ̃m|U(tf )|φn⟩|2
e−βEn

Z(0)
(2.28)

and the probability distribution function of the work done W is given by

p(W ) =
∑
m,n

δ
(
W − [Ẽm − En]

)
pmnpn

=
∑
m,n

δ
(
W − (Ẽm − En)

)
|⟨φ̃m|U(tf )|φn⟩|2

e−βEn

Z(0)
(2.29)

where δ
(
W − (Ẽm − En)

)
is the Dirac delta function. The characteristic

function G(u) is obtained by taking the Fourier transform of the probability

distribution function (2.29):

G(u) =

∫
dWeiuWp(W )

=

∫
dWeiuW

∑
m,n

δ
(
W − (Ẽm − En)

)
|⟨φ̃m|U(tf )|φn⟩|2

e−βEn

Z(0)
. (2.30)

Using the property of dirac delta functions
∫
f(x)δ(x − a)dx = f(a), the
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integral becomes

G(u) =
∑
m,n

eiu(Ẽm−En)|⟨φ̃m|U(tf )|φn⟩|2
e−βEn

Z(0)

=
∑
m,n

eiu(Ẽm−En)⟨φn|U †(tf )|φ̃m⟩⟨φ̃m|U(tf )|φn⟩
e−βEn

Z(0)

=
∑
m,n

⟨φn|U †(tf )e
iuẼm|φ̃m⟩⟨φ̃m|U(tf )e−iuEn

e−βEn

Z(0)
|φn⟩. (2.31)

By noting that exp
(
−iuH(0)

)
|φn⟩ = exp

(
−iuEn

)
|φn⟩, exp

(
−iuH(tf )

)
|φ̃m⟩ =

exp
(
−iuẼm

)
|φ̃m⟩, and exp

(
−βH(0)

)
|φn⟩ = exp

(
−βEn

)
|φn⟩, we can rewrite

(2.31) in terms of the Hamiltonians H(0) and H(tf ):

G(u) =
∑
m,n

⟨φn|U †(tf )e
iuH(tf )|φ̃m⟩⟨φ̃m|U(tf )e−iuH(0) e

−βH(0)

Z(0)
|φn⟩

=
∑
n

⟨φn|U †(tf )e
iuH(tf )

∑
m

|φ̃m⟩⟨φ̃m|U(tf )e−iuH(0)ρ(0)|φn⟩,

where ρ = exp
(
−βH(0)

)
/Z(0) is the density matrix of the initial state.

Because of the completeness of the eigenstates |φ̃m⟩’s, the summation over

m becomes
∑

m |φ̃m⟩⟨φ̃m| = I. Thus, the characteristic function is given by

G(u) =
∑
n

⟨φn|U †(tf )e
iuH(tf )U(tf )e

−iuH(0)ρ(0)|φn⟩

=Tr
{
U †(tf )e

iuH(tf )U(tf )e
−iuH(0)ρ(0)

}
, (2.32)

where the trace Tr is over the eigenstates |φn⟩. Equation (2.32) can be

written as

G(u) = ⟨eiuHH(tf )e−iuH(0)⟩, (2.33)

where exp
(
iuHH(tf )

)
= U †(tf ) exp

(
iuH(tf )

)
U(tf ) is the operator exp

(
iuH(tf )

)
in the Heisenberg representation.

The logarithm of the characteristic function G(u) is known as the cumu-

lant generating function. This cumulant generating function lnG(u) can be

expanded in terms of the cumulants κn:

lnG(u) =
iu

1!
κ1 +

(iu)2

2!
κ2 +

(iu)3

3!
κ3 + · · · =

∞∑
n=1

(iu)n

n!
κn. (2.34)
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The nth cumulant of the probability distribution function p(W ) are calculated

by repeated differentiation of the cumulant generating function:

κn =
1

in
∂n

∂un
lnG(u)

∣∣∣∣
u=0

. (2.35)
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Chapter 3

Work Statistics

We will now consider the non-equilibrium process where the system is pre-

pared in the ground state |Ψ0⟩ of the XY model Hamiltonian H0 with trans-

verse magnetic field strength h0 and anisotropy strength γ0. The parameters

h0 and γ0 are then suddenly changed to values h1 and γ1, respectively, such

that the time interval of the parameter switch is much smaller than the re-

sponse time of the system. This process is called a quantum quench. This

process takes the system out of equilibrium and the work done W after the

quench is characterized by a probability distribution function (PDF) p(W )

because measurements of the system energy after the quench may not yield

the same value [11, 18]. With ρ(0) = 1 for the ground state at zero tem-

perature, the work probability distribution function p(W ) in equation (2.29)

becomes

p(W ) =
∑
n

δ(W − (Ẽn − E0))
∣∣⟨Ψ̃n|Ψ0⟩

∣∣2, (3.1)

where E0 is the energy of the initial (ground) state |Ψ0⟩ and Ẽn’s are the

eigenenergies of the eigenstates |Ψ̃n⟩ of the final Hamiltonian H1 with post-

quench transverse field h1 and post-quench anisotropy parameter γ1.
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3.1 Characteristic function

For a quantum system with a sudden switch of Hamiltonian from H0 to H1,

the evolution operator U(t) in equation (2.33) becomes U(t) = 1 [15]. Thus,

the associated characteristic function G(u) of the work PDF (3.1) for an

arbitrary quench in the XY model is given by

G(u) =
〈
eiuH1e−iuH0

〉
. (3.2)

The quantum average appearing in equation (3.2) is evaluated with respect

to the ground state |Ψ0⟩ ≡ |Ψ0,q,Ψ0,−q⟩ of the initial Hamiltonian H0 at zero

temperature:

G(u) = ⟨Ψ0|eiuH1e−iuH0|Ψ0⟩. (3.3)

Since |Ψ0⟩ is an eigenstate of the initial Hamiltonian

H0 =
1

2

N−1∑
q=0

ϵ0(q)
[
χ†
qχq + χ†

−qχ−q − 1
]
, (3.4)

then the exponential e−iuH0 acting on it becomes

e−iuH0|Ψ0⟩ = e−iuE0 |Ψ0⟩.

E0 = −1
2

∑N−1
q=0 ϵ0(q) is the ground state energy of the initial state where

ϵ0(q) is given in term of the initial field and anisotropy parameters as

ϵ0(q) =

[(
h0 − cos

2πq

N

)2

+ γ20 sin
2 2πq

N

]1/2
.

The characteristic function simplifies into

G(u) = eiuE0⟨Ψ0|eiuH1|Ψ0⟩. (3.5)

Since the ground state |Ψ0⟩ is not an eigenstate of the post-quench Hamilto-

nian

H1 =
1

2

N−1∑
q=0

ϵ1(q)
[
χ̃†
qχ̃q + χ̃†

−qχ̃−q − 1
]
, (3.6)
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with

ϵ1(q) =

[(
h1 − cos

2πq

N

)2

+ γ21 sin
2 2πq

N

]1/2
,

the average over |Ψ0⟩ cannot be evaluated straightforwardly. In order for

us to evaluate the quantum average in equation (3.5), the ground state of

the pre-quench Hamiltonian |Ψ0⟩ must be written in terms of the eigenstates

of the post-quench Hamiltonian |Ψ̃n⟩ ≡ |Ψ̃n,q, Ψ̃n,−q⟩ (with n = 0, 1). This

relationship is obtained by using the Bogolyubov transformation (equations

(2.15)) for H0:

ψq = χq cos θq + χ†
−q sin θq, ψ†

−q = −χq sin θq + χ†
−q cos θq, (3.7)

and H1:

ψq = χ̃q cos θ̃q + χ̃†
−q sin θ̃q, ψ†

−q = −χ̃q sin θ̃q + χ̃†
−q cos θ̃q. (3.8)

Inversion of equations (3.7) will give

χq = ψq cos θ − ψ†
−q sin θ χ†

−q = ψq sin θ + ψ†
−q cos θ. (3.9)

Substitution of equations (3.8) to equations (3.9) gives the relation of the

pre- and post-quench Bogolyubov operators:

χq = χ̃q cos∆q − χ̃†
−q sin∆q, (3.10a)

χ−q = χ̃−q cos∆q + χ̃†
q sin∆q, (3.10b)

where ∆q = θ1(q)− θ0(q) is the difference between the post- and pre-quench

Bogolyubov angles and θ0(q) and θ1(q) given by equation (2.16) with h, γ =

h0, γ0 and h1, γ1, respectively. Equations (3.10) will enable us to write the

ground state of H0 in terms of the ground state of H1. Let us define

|Ψ0⟩ = Aχqχ−q|Ψ̃0⟩,
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where A is a normalization factor. Expanding χq and χ−q using equations

(3.10) and noting that χ̃±q|Ψ̃0⟩ = 0, we have

|Ψ0⟩ =A
(
χ̃q cos∆q − χ̃†

−q sin∆q

)(
χ̃−q cos∆q + χ̃†

q sin∆q

)
|Ψ̃0⟩

=A
(
cos∆q sin∆qχ̃qχ̃

†
q + sin2∆qχ̃

†
qχ̃

†
−q

)
|Ψ̃0⟩

=A(cos∆q sin∆q|Ψ̃0⟩+ sin2∆q|Ψ̃1⟩).

The normalization constant A is calculated by imposing ⟨Ψ0|Ψ0⟩ = 1:

⟨Ψ0|Ψ0⟩ =|A|2(cos∆q sin∆q⟨Ψ̃0|+ sin2∆q⟨Ψ̃1|)

× (cos∆q sin∆q|Ψ̃0⟩+ sin2∆q|Ψ̃1⟩)

=|A|2(cos2∆q sin
2∆q⟨Ψ̃0|Ψ̃0⟩+ sin4∆q⟨Ψ̃1|Ψ̃1⟩) = 1

where it can be easily seen that |A|2 = 1
sin2 ∆

or A = 1
sin∆

. Thus, the relation

of the pre-quench and the post-quench grounds states is given by

|Ψ0⟩ = (cos∆q + sin∆qχ̃
†
qχ̃

†
−q)|Ψ̃0⟩. (3.11)

We can use equation (3.11) to rewrite equation (3.5) in terms of the post-

quench ground state |Ψ̃0⟩:

G(u) = e
iu
2

∑N−1
q=0 ϵ0(q)⟨Ψ̃0|(cos∆q + sin∆qχ̃−qχ̃q)

e
iu
2

∑N−1
q=0 ϵ1(q)(χ̃

†
qχ̃q+χ̃†

−qχ̃−q−1)(cos∆q + sin∆qχ̃
†
qχ̃

†
−q)|Ψ̃0⟩

After operating the post-quench operators to the ground state of H1, the

zero temperature characteristic function G(u) is written in its final form as

a product over the pseudomomentum q given by

G(u) = eiuδ
N−1∏
q=0

{
cos2∆q + eiuϵ1(q) sin2∆q

}
, (3.12)

where

δ = E1 − E0 =
1

2

N−1∑
q=0

[
ϵ0(q)− ϵ1(q)

]
is the difference between the post- and pre-quench ground state energies.
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3.2 Cumulants of p(W )

Now that the characteristic function of the probability density function of the

work done for an arbitrary quantum quench in the XY model is calculated

(equation (3.12)), let us turn our attention to the cumulants of the work

PDF.

3.2.1 Average work and fluctuation in work done

Let us use equation (2.35) to compute for the average work done ⟨W ⟩ = κ1

for an arbitrary quench of the field strength and the anisotropy parameter in

the XY model. The cumulant generating function lnG(u) is given by

lnG(u) = ln

{
eiuδ

N−1∏
q=0

[
cos2∆q + eiuϵ1(q) sin2∆q

]}

=iuδ +
N−1∑
q=0

ln
[
cos2∆q + eiuϵ1(q) sin2∆q

]
. (3.13)

where δ = −1
2

∑
q[ϵ1(q)− ϵ0(q)]. Since

∂

∂u

[N−1∑
q=0

ln
[
cos2∆q+e

iuϵ1(q) sin2∆q

]]
=

N−1∑
q=0

iϵ1(q)e
iuϵ1(q) sin2∆q

cos2∆q + eiuϵ1(q) sin2∆q

, (3.14)

then the average work done is

⟨W ⟩ =
N−1∑
q=0

{
1

2
ϵ0(q)−

1

2
ϵ1(q) + ϵ1(q) sin

2∆q

}
. (3.15)

Simplifying the terms with ϵ1(2) (trigonometric double-angle identity) will

lead to the result

⟨W ⟩ = 1

2

N−1∑
q=0

[
ϵ0(q)− ϵ1(q) cos 2∆q

]
. (3.16)

We can express the average work in terms of the quench parameters h

and γ by using equation (2.16) and the trigonometric identity cos 2∆q =
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cos 2θ0 cos 2θ1 + sin 2θ0 sin 2θ1. Doing so will give

⟨W ⟩ = 1

2

N−1∑
q=0

1

ϵ0(q)

{
(h0−h1)

[
h0−cos

(
2πq

N

)]
+γ0(γ0−γ1) sin2

(
2πq

N

)}
.

(3.17)

On the other hand, the fluctuations in measurements of the work done

on the system σ2
W = ⟨W 2⟩ − ⟨W ⟩2 are measured by the second cumulant

κ2. Taking the derivative of equation (3.14) and using trigonometric identity

sin 2∆ = 2 sin∆ cos∆ yields

σ2
W = ⟨W 2⟩ − ⟨W ⟩2 = 1

4

N−1∑
q=0

ϵ21(q) sin
2 2∆q. (3.18)

By using equation (2.16) and the trigonometric identity sin 2∆ = sin θ1 cos θ0−
cos θ1 sin θ0, the work fluctuation is given in terms of the quench parameters

h and γ as

σ2
W =

1

4

N−1∑
q=0

1

ϵ20(q)

{
γ1 sin(2πq/N)[h0 − cos(2πq/N)]

− γ0 sin(2πq/N)[h1 − cos(2πq/N)]

}2

. (3.19)

For the thermodynamic limit (N → ∞), the argument 2πq/N of the trigono-

metric functions becomes infinitesimal and the summation over q becomes

an integral over k = 2πq/N . Thus, the fluctuations in the measured work

done per spin in the thermodynamic limit is

lim
N→∞

σ2
W

N
=

1

8π

∫ 2π

0

sin2 k

[
γ1(h0 − cos k)− γ0(h1 − cos k)

]2
(h0 − cos k)2 + γ20 sin

2 k
dk. (3.20)

3.2.2 Contour integral representation of σ2W/N

Let us now consider the contour integral representation of the work fluctua-

tion. Let z be a complex number within a unit circle centered at the origin

of the complex plane. z is given by

z = eik ⇒ dz = izdk. (3.21)
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The trigonometric functions sine and cosine are given in terms of z by

sin k =
1

2i
(z − z∗) cos k =

1

2
(z + z∗),

where z∗ is the complex conjugate of z. Thus, the contour integral represen-

tation of the work fluctuation per spin is

σ2
W

N
= − 1

32πi

∮
C

(z2 − 1)2
[
(z2 + 1)(γ1 − γ0)− 2z(γ1h0 − γ0h1)

]2
z3
[
(2h0z − z2 − 1)2 − γ20(z

2 − 1)2
] dz, (3.22)

where the contour C is a unit circle located at the origin of the complex plane.

The contour integral is evaluated by the residue theorem. Thus, by letting

f(z) =
(z2 − 1)2

[
(z2 + 1)(γ1 − γ0)− 2z(γ1h0 − γ0h1)

]2
z3
[
(2h0z − z2 − 1)2 − γ20(z

2 − 1)2
] , (3.23)

the contour integral representation of the work fluctuation in equation (3.22)

is evaluated as

σ2
W

N
= − 1

32πi

∮
C
f(z)dz = − 1

32πi

[
2πi

∑
Res
z=zi

f(z)

]
, (3.24)

where the sum is over all poles of f(z) inside the unit circle C. The poles of

f(z) consist of zero and generally non-zero poles given by

z
(1)
± =

h0 ±
√
h20 + γ20 − 1

γ0 + 1
(3.25a)

z
(2)
± =

−h0 ±
√
h20 + γ20 − 1

γ0 − 1
. (3.25b)

Equation (3.24) is an exact analytic expression for the work fluctuation

per spin for an arbitrary quench in the XY model. The poles of f(z) (equa-

tions (3.25)) depend only on the parameters of initial Hamiltonian H0. For

non-critical pre-quench Hamiltonian, the poles may be located inside or out-

side of the unit circle C. In fact, only two of the four non-zero poles are inside

the contour C for values of the transverse field h0 and anisotropy parameter
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Figure 3.1: Regions in the phase diagram of the Heisenberg XY model.

γ0 that are not critical. Table 3.1 gives the position of the poles for the dif-

ferent region of the XY model phase diagram (see figure 3.1). Thus, equation

(3.24) becomes a sum of only three residues (including z = 0) for non-critical

H0. However, for critical pre-quench Hamiltonian H0, some of the poles fall

along the contour C (See table 3.2). As the transverse field h0 and anisotropy

γ0 cross the quantum critical points, these poles move from inside to outside

of the unit circle or vice versa. This results to non-analyticity in the work

fluctuation.

Table 3.1: Position of the poles for noncritical h0 and γ0

Region Inside C Outside C Real
poles

Imaginary
poles

A z
(1)
+ and z(1)− z

(2)
+ and z(2)− all none

B z
(1)
+ and z(1)− z

(2)
+ and z(2)− none all

C z
(1)
− and z(2)+ z

(1)
+ and z(2)− all none

A’ z
(2)
+ and z(2)− z

(1)
+ and z(1)− all none

B’ z
(2)
+ and z(2)− z

(1)
+ and z(1)− none all

C’ z
(1)
+ and z(2)− z

(1)
− and z(2)+ all none
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Table 3.2: Position of the poles for critical h0 and γ0

Critical line Poles on C

Isotropic XX line (γ0 = 0, |h0| < 1) z
(1)
− = z

(2)
+ and z(1)+ = z

(2)
−

h0 = 1, γ > 0 z
(1)
+ = z

(2)
+

h0 = 1, γ < 0 z
(1)
− and z(2)−

h0 = −1, γ > 0 z
(1)
− and z(2)−

h0 = −1, γ < 0 z
(1)
+ and z(2)+

Multicritical points (γ = 0, |h0| = 1) z
(1)
+ = z

(1)
− = z

(2)
+ = z

(2)
−

3.3 Examples of quenches in the XY model

Let us now consider some examples of transverse field and anisotropy quenches

in the Heisenberg XY model. First, the case of field quenches for differ-

ent fixed values of anisotropy γ0 = γ1. Figure 3.2 shows the fluctuation

in measured work done per spin in the thermodynamic limit (N → ∞).

The fluctuation is non-analytic when the pre-quench transverse field is tuned

to |h0| = 1. These non-analyticities take the form of cusps along the line

|h0| = 1. Fluctuations suddenly change along these lines due to the quantum

phase transition of the Transverse Ising model. It is also observed that when

the anisotropy between interactions in the x− and y−directions is increased,

the cusps are smoothened but the value of the fluctuations also increase.

Larger γ lessen the effect of the critical field but increases the range of pos-

sible measured work done. However, for the case of field quenches along the

XX line (γ0 = γ1 = 0), there is no fluctuation in measurements of the work

done per spin for any quench h0 → h1 as seen in the top left plot of figure

3.2. This means that the average work (equation (3.17)) reduces to a delta-

peaked work done that only depends on the difference between the pre- and

post-quench transverse fields

⟨W ⟩ = −N
2

(
h1 − h0

)
. (3.26)
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Figure 3.2: The work fluctuation per spin at different fixed anisotropy
strength (γ = 0, 1

2
, 1, 3

2
from left to right). Except for the field quenches

along the XX line (γ = 0), σ2
W/N (N → ∞) is not analytic when the pre-

quench transverse magnetic field is |h0| = 1. This behavior is due to the
quantum phase transition of the Ising universality class. Along the XX line,
p(W ) is a delta-peaked function with σ2

W/N = 0.

In the XX line, the transverse field acts as chemical potential µ = h
2

which

is the amount of energy added to the system’s ground state energy for every

particle at site j (see equation (2.7) with γ = 0). The set of eigenstates of the

pre-quench Hamiltonian H0(h0, γ0 = 0) is also the set of eigenstates of the

post-quench Hamiltonian H1(h1, γ1 = 0). Hence, the probability distribution

function of the work done for any field quenches along the XX line is delta-

peaked with no work fluctuation.

Secondly, let us take the case of anisotropy quenches at fixed h0 = h1.
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Figure 3.3: The work fluctuation per spin at different fixed transverse field
strength (h = 0, 1/2, 1, 3/2 from left to right) is not analytic when the pre-
quench anisotropy parameter is γ0 = 0 for |h| < 1.

Work fluctuation per spin (N → ∞) for this case is shown in figure 3.3.

Cusps show when the initial anisotropy parameter is critical for quenches

inside the ferromagnetic phase as seen in the top two contour plots in figure

3.3. As with the field quenches at fixed γ, this non-analyticity is due to a

quantum phase transition. This transition line separates strong ordering of

the spins in the x− and the y−directions (XX line in figure 2.1). The work

fluctuation is analytic when the anisotropy quench does not cross the XX

critical line (γ = 0 for |h| > 1).

Lastly, we consider the case of quenches where the post-quench parame-

ters are tuned to fixed values. Figure 3.4 shows contour plots for quenches
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Figure 3.4: Work fluctuation per spin (N → ∞) that end at fixed post-quench
parameters. (a) Quenches that end at (h1 = 0, γ1 = 1). (b) Quenches that
end at (h1 = 2, γ1 = 1).

that end at the zero-field transverse Ising model (Figure 3.4a) and at a high-

field (h = 2) Ising model (Figure 3.4b). These plots show the non-analyticity

of the work fluctuation per spin at the critical field lines h0 = ±1. It can

be observed in figure 3.4a that quenches that began near the same point

as the post-quench parameters have the minimum fluctuation in work done

and increases as the pre-quench parameters go out of the region of high fer-

romagnetic order in the x-direction (γ > 0 and |h| < 1). On the other

hand, quenches that began in the region of high ferromagnetic order in the

y-direction (γ < 0 and |h| < 1) have constant work fluctuations per spin.

Figure 3.4b also shows that quenches starting near the same point as the

post-quench parameters have minimum fluctuations in the work done.

Figure 3.5 shows work fluctuation per spin for quenches that end at a

point on the isotropic XX line. Figure 3.5a shows work fluctuation that

end at the zero-field XX line (h1 = 0, γ1 = 0). Non-analyticity of the work

fluctuation per spin also manifests as cusps at the critical field lines. An

addition to this, it is observed that the work fluctuation per spin is zero at

the line γ0 = 0. This adds to the earlier observation that the work done for
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quantum quenches along the XX line is delta-peaked. The probability density

of the work done after the quench is delta-peaked at W = −1
2
N(h1−h0). On

the other hand, Figure 3.5b shows the work fluctuation per spin for quenches

that end at the multicritical point (h1 = 1, γ1 = 0). The work fluctuation

is only non-analytic at the field line h = −1. The work fluctuation per spin

appears to be analytic when the pre- and post-quench Hamiltonians are on

the same critical line (h0 = h1 = 1).
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Figure 3.5: Work fluctuation per spin (N → ∞) that end at fixed post-quench
parameters. (a) Quenches that end at (h1 = 0, γ1 = 0). (b) Quenches that
end at (h1 = 1, γ1 = 0).
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Chapter 4

Irreversible Entropy

In this chapter, we shall compute for the irreversible entropy produced during

an arbitrary quench in the XY model. This irreversible entropy ∆Sirr is a

measure of the irreversibility of a protocol done on a quantum system. We

will consider the case where the system is initially prepared in a thermal

state of H0 at reciprocal temperature β and described by a density matrix

ρ(H0) =
e−βH0

Z0

(4.1)

with partition function

Z0 = Tr[e−βH0 ]. (4.2)

After some time, the coupling with the heat bath is removed and the quench

protocol is performed.

4.1 Fluctuation relations

For finite systems, the average work done ⟨W ⟩ and the free energy difference

∆F is related by the Jensen’s inequality

⟨W ⟩ ≥ ∆F (4.3)

in accordance with the second law of thermodynamics [12, 38]. The equality

is reached for quasistatic processes. ∆F = F1 − F0 is the difference between
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the free energies of the two equilibrium configurations corresponding to the

post- and pre-quench Hamiltonians H1 and H0, respectively. The difference

between the average work done ⟨W ⟩ and the change in free energy ∆F is

supplied by introducing an irreversible/dissipated work:

⟨W ⟩irr = ⟨W ⟩ −∆F. (4.4)

For isolated systems where heat transfer is zero, the irreversible work is due

to the irreversible entropy produced during the quench [12]

∆Sirr = β⟨W ⟩irr = β
[
⟨W ⟩ −∆F

]
. (4.5)

The free energy change ∆F is obtained using the known Jarzynski equal-

ity [17]

⟨e−βW ⟩ = e−β∆F ,

or, equivalently,

∆F = − 1

β
ln⟨e−βW ⟩. (4.6)

The quantum average of the exponential exp(−βW ) in equation (4.6) is

similar to the characteristic function of the work PDF in equation (3.2) by

noting that the work done is equal to the difference of the final and the initial

energies of the system and by introducing u = iβ

⟨e−βW ⟩ = G(iβ) = Tr
[
e−βH1eβH0ρ(H0)

]
. (4.7)

The second equality in equation (4.7) then becomes

⟨e−βW ⟩ = 1

Z0

Tr
[
e−βH1

]
. (4.8)

By noting that the post-quench partition function is given by

Z1 = Tr
[
e−βH1

]
, (4.9)

it is shown that the quantum average in equation (4.6) is equivalent to the ra-

tio of the system’s post-quench partition function to the pre-quench partition

function as in [17]

⟨e−βW ⟩ = Z1

Z0

. (4.10)
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4.2 Average work at finite temperature

We shall now calculate the average work done for a quench that is per-

formed on a thermal state. The system is initially prepared in a canonically

distributed mixed state of the initial Hamiltonian H0 in effective thermal

equilibrium with a heat bath of temperature 1/β. The system is canonically

distributed and its density matrix is given by equation (4.1). The character-

istic function of the work PDF for a quench at finite temperature is given

by

G(u) = Tr
[
eiuH1e−iuH0ρ(H0)

]
, (4.11)

where the trace is evaluated with respect to the eigenstates |Ψn,q,Ψn,−q⟩ of

the pre-quench Hamiltonian H0. The partition function associated with the

Hamiltonian of the XY model (equation (3.4)) is given by

Z0 =Tr exp

{
−β
2

N−1∑
q=0

ϵ0(q)[χ
†
qχq + χ†

−qχ−q − 1]

}

=2N
N−1∏
q=0

cosh

[
βϵ0(q)

2

]
. (4.12)

Thus, with the use of equations (3.4) and (3.6), and tracing over the eigen-

states |Ψn,q,Ψn,−q⟩, the characteristic function of the work PDF p(W ) is

G(u) =
1

Z0

N−1∏
q=0

∑
n±q=0,1

e−
1
2
(iu+β)ϵ0(q)[nq+n−q−1]

× ⟨Ψn,q,Ψn,−q|e
1
2
iuϵ1(q)[χ̃

†
qχ̃q+χ̃†

−qχ̃−q−1]|Ψn,q,Ψn,−q⟩. (4.13)

With the application of appropriate creation operators to equation (3.11),

the eigenstates of the pre-quench Hamiltonian is written in terms of the

eigenstates of the post-quench Hamiltonian

|Ψn,q,Ψn,−q⟩ =
(
χ†
q

)n(
χ†
−q

)n
(cos∆q + sin∆qχ̃

†
qχ̃

†
−q)|Ψ̃n,q, Ψ̃n,−q⟩, (4.14)

where the pre-quench Bogolyubov operators χ†
q± are given in terms of the

post-quench Bogolyubov operators χ̃†
±q by equations (3.10). With the use of
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equation (4.14), the matrix elements in equation (4.13) can be evaluated and

will give

G(u) =
1

Z0

N−1∏
q=0

{
e

1
2
(iu+β)ϵ0

[
e−

1
2
iuϵ1 cos2∆q + e

1
2
iuϵ1 sin2∆q

]
+ e−

1
2
(iu+β)ϵ0

[
e

1
2
iuϵ1 cos2∆q + e−

1
2
iuϵ1 sin2∆q

]
+ 2

}
. (4.15)

The first and the second cumulants from equation (4.15) via equation

(2.35) correspond to the average work done and work fluctuations, respec-

tively, for a quantum quench of the XY model at finite temperature. The

first cumulant gives

⟨W ⟩ = 1

2

N−1∑
q=0

(
ϵ0 − ϵ1 cos 2∆q

)
tanh

[
βϵ0(q)

2

]
, (4.16)

or, equivalently,

⟨W ⟩ = 1

2

N−1∑
q=0

1

ϵ0(q)

[
(h0 − h1)

(
h0 − cos

2πq

N

)
+ γ0(γ0 − γ1) sin

2 2πq

N

]
tanh

[
βϵ0(q)

2

]
, (4.17)

for the average work done after an arbitrary quench in the XY model. If we

take the zero temperature limit (β → ∞) of equation (4.17), the hyperbolic

tangent will approach unity and the finite temperature case will simplify to

the zero temperature case (equation (3.16)).

4.3 Irreversible entropy produced

The irreversible entropy produced then is computed as

∆Sirr = β⟨W ⟩+ ln
Z1

Z0

. (4.18)

where the partition functions Z0 and Z1 for the XY ferromagnet are given

by equation (4.12) with parameters (h0, γ0) and (h1, γ1), respectively. The
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Figure 4.1: Irreversible entropy produced for quenches with magnitude δh =
0.01 along the Ising line γ = 1 with different number of particles N at inverse
temperature β = 100.

average work done after a quench in the XY model for finite temperature is

given by equation (4.17)). Thus, for an arbitrary quench in the XY model,

the irreversible entropy produced is

∆Sirr =
N−1∑
q=0

{
β
(
ϵ0 − ϵ1 cos 2∆q

)
tanh

[
βϵ0(q)

2

]
+ ln

cosh
[
βϵ1(q)/2

]
cosh

[
βϵ0(q)/2

]}. (4.19)

Let us now consider some specific cases of quenches in the XY model and

characterize the irreversible entropy produced.

Case 1– First, let us consider a quantum quench of the transverse mag-

netic field along the Ising Line (γ0 = γ1 = 1). Let us set the value of the

difference between the post- and pre-quench transverse field to δh = 0.01.
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Figure 4.2: Irreversible entropy produced per spin for small field quench
along the ising line at different inverse temperature β. There are N = 1001
particles.

The irreversible entropy produced will have the form

∆Sirr =
N−1∑
q=0

{
β
(
h0 − h1

)[h0 − cos(2πq/N)
]

ϵ0(q)
tanh

[
β

2
ϵ0(q)

]

+ ln
cosh

[βϵ1(q)
2

]
cosh

[βϵ0(q)
2

]}. (4.20)

The result for a quench in the XY model along the Ising line (equation (4.20))

reproduces the result in reference [12]. Figure 4.1 shows the irreversible

entropy produced for quenches along the Ising line (γ = 1) in the XY model.1

The production of irreversible entropy peaks at the critical field h0 = 1. This

is due to the quantum phase transition of the Ising universality class. Figure

(4.1) shows that the peak in irreversible entropy increases as the number of

the particles in the lattice increases at constant temperature (β = 100). This
1Figure 4.1 is similar to the result of [12] except for the value of ∆Sirr due to the

difference in the energy scale used. Reference [12] used an energy scale which is twice of
the energy scale used in this thesis.

33



result implies that the irreversible entropy is an extensive property of the

quenched system.

On the other hand figure 4.2 shows the irreversible entropy produced

per spin for small field quench δh = 0.01 at different value of the inverse

temperature β. The peak of ∆Sirr/N increases as the temperature decreases

(β increases). This is a result of the emergence of thermal fluctuation at

higher temperature. The signature of quantum criticality decreases at higher

temperature with the emergence of these thermal fluctuations [12].

Figure 4.3 shows the same quench protocol at inverse temperature β =

100 for different value of anisotropy strength γ. The number of particles is

kept at N = 1001. The irreversible entropy produced has its highest peak

when the quench is done across the multicritical point (|h| = 1, γ = 0).

For larger values of the anisotropy parameter, the irreversible entropy per

spin decreases for field quench that is done inside the ferromagnetic phase

(|h| < 1) and increases for field quenches that are done in the paramagnetic

phase (|h| > 1).
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Figure 4.3: Irreversible entropy produced per spin for small field quenches
δh = 0.01. There are N = 1001 spins at β = 100 inverse temperature.
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Figure 4.4: Irreversible entropy produced per spin for small anisotropy
quenches δγ = 0.01. There are N = 1001 spins at β = 100 inverse tem-
perature.

Case 2– For the case of a quantum quench of the anisotropy parameter

γ along a constant magnetic field, h0 = h1 = h, the irreversible entropy

produced is given by

∆Sirr =
N−1∑
q=0

{
β
(
γ0 − γ1

)γ0 sin2(2πq/N)

ϵ0(q)
tanh

[
βϵ0(q)

2

]

+ ln
cosh2

[βϵ1(q)
2

]
cosh2

[βϵ0(q)
2

]}. (4.21)

Figure (4.4) shows the behavior of the irreversible entropy produced per

spin for anisotropy quenches δγ = 0.01 with N = 1001 particles at β =

100 inverse temperature. The irreversible entropy production peaks when

quench protocol crosses XX line (γ0 = 0). It is observed that the peak in the

irreversible entropy produced is highest when the magnetic field is |h| ≪ 1

(deep inside the ferromagnetic phase). As the magnetic field is increased and

goes outside of the ferromagnetic phase, the irreversible entropy produced
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Figure 4.5: Dissipated work for small sminultaneous quenches δh = δγ = 0.01
along the line h = γ.

per spin decrease. In contrast with the field quenches along the Ising line,

the irreversible entropy for this case is not maximum when the quench is

done at the multicritical point (green curve in Fig. (4.4)).

Case 3– Lastly, let us consider the case of a simultaneous quench of the

transverse field and the anisotropy parameter in the XY model. This protocol

is done along the diagonal line h = γ in the phase diagram. For this case,

the irreversible entropy produced is given by

∆Sirr =
N−1∑
q=0

{
β
(
h0 − h1

)
ϵ0(q)

[
[h0−cos(2πq/N)]+h0 sin

2(2πq/N)

]
tanh

[
βϵ0(q)

2

]

+ ln
cosh

[
βϵ1(q)

2

]
cosh

[βϵ0(q)
2

]}. (4.22)

The dissipated work per spin ⟨W ⟩irr/N = ∆Sirr/(Nβ) for small quenches

δh = δγ = 0.01 is shown in figure (4.5) at different inverse temperature

β. The three peaks in the dissipated work ⟨W ⟩irr correspond to the three

critical lines that are crossed by this quench. It is observed that for small

temperature (large β), the curves of dissipated work coincide except when
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the quenches crossed the critical lines. Of the four curves, only β = 10

has slight difference in the behavior with the other curves. This is due to

the decrease in the signature of quantum criticality as thermal fluctuations

emerge at higher temperatures.
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Chapter 5

Concluding Remarks

In this thesis, we studied the emergent thermodynamics associated with

a non-equilibrium protocol done by an arbitrary instantaneous quantum

quench of the parameters in the Heisenberg XY model. From the charac-

teristic function of the probability distribution function of the work done,

we were able to calculate an exact expression for the work fluctuation per

spin. We have shown that the work fluctuation exhibits non-analytic behav-

ior when the pre-quench parameters are tuned across quantum critical points.

This is connected to the criticality of the XY model at these points. On the

other hand, when the pre- and post-quench parameters are on the same crit-

ical line, the work fluctuation is analytic. Furthermore, for quenches along

the XX line, the work PDF is delta peaked about one value. Thus, leading to

zero work fluctuation. This happens because the isotropic XX model ground

state is an eigenstate of both the pre- and post-quench Hamiltonians.

We also investigated the irreversible entropy produced during an arbitrary

quench. The irreversible entropy was shown to peak when quantum critical

points are crossed by the quench protocol. In general, increasing the number

of particles induces a higher irreversible entropy implying that ∆Sirr is an

extensive property of the quenched system.
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