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Shock waves are examples of the far-from-equilibrium behavior of matter; they are ubiquitous in nature,
yet the underlying microscopic mechanisms behind their formation are not well understood. Here, we study
the dynamics of dispersive quantum shock waves in a one-dimensional Bose gas, and show that the
oscillatory train forming from a local density bump expanding into a uniform background is a result of
quantum mechanical self-interference. The amplitude of oscillations, i.e., the interference contrast,
decreases with the increase of both the temperature of the gas and the interaction strength due to the
reduced phase coherence length. Furthermore, we show that vacuum and thermal fluctuations can
significantly wash out the interference contrast, seen in the mean-field approaches, due to shot-to-shot
fluctuations in the position of interference fringes around the mean.
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Introduction.—The study of dispersive shock waves in
superfluids, such as dilute gas Bose-Einstein condensates
(BECs), has been attracting a growing attention in recent
years (see, e.g., Refs. [1–10]). This is partly due to the
fact that shock waves represent examples of far-from-
equilibrium phenomena, for which a fundamental under-
standing of the laws of emergence from the underlying
many-body interactions is generally lacking. Ultracold
atomic gases offer a promising platform for addressing
this open question due to the high level of experimental
control over the system parameters and the dynamics. Other
physical systems in which dispersive shock waves form,
and which may benefit from such an understanding, include
rarefield plasma [11,12], intense electron beams [13], liquid
helium [14], and exciton polaritons [15].
Dispersive (or nondissipative) shock waves in fluid

dynamics are identified by density ripples or oscillatory
wave trains whose front propagates faster than the local
speed of sound in the medium; a typical scenario for their
formation is the expansion of a local density bump into a
nonzero background. Dissipative shock waves, on the other
hand, are characterised by a smooth but steep (nearly
discontinuous) change in the density [1,16,17]. In either
case, the effects of dispersion or dissipation prevent the
unphysical hydrodynamic gradient catastrophe by means of
energy transfer from large to small lengthscales, or through
the release of the excess energy via damping.
While dissipative shock waves involve irreversible proc-

esses that can be well described within classical hydro-
dynamics, dispersive shock waves in BECs require
quantum or superfluid hydrodynamics for their description.
The latter can be derived from the mean-field description of
weakly interacting BECs via the Gross-Pitaevskii equation

(GPE) [18,19]. The effect of dispersion is represented here
by the so-called quantum pressure term, hence the use of an
alternative term for dispersive shock waves—quantum
shock waves [2]. We point out, however, that essentially
the same phenomenon can be observed in classical
nonlinear optics [20,21], wherein the electromagnetic
dispersive shock waves are generated in a medium with
a Kerr-like nonlinearity and are described by the nonlinear
Schrödinger equation (NLSE). The presence of nonlinear
interaction [22], in both the GPE and NLSE, has been
exploited in, and is required for, the interpretation of
dispersive shock waves as a train of gray solitons [6,23].
However, as we show below, qualitatively similar density
modulations can form in a noninteracting case which does
not support solitons. These incongruencies imply that the
understanding of dispersive shock waves requires reassess-
ment, including clarification of the role of actual quantum
and thermal fluctuations which require beyond-mean-field
descriptions.
In this Letter, we study dispersive shock waves in a one-

dimensional (1D) Bose gas, described by the Lieb-Liniger
model [24], and show that the microscopic mechanism
behind the formation of the oscillatory wave train is
quantum mechanical interference: the wave packet that
makes up a local density bump self-interferes with its own
background upon expanding into it. This is in contrast to a
Gaussian wave packet expanding into free space, which
maintains its shape. Our results span the entire range of
interaction strengths, from the noninteracting (ideal) Bose
gas regime, through the weakly interacting or Gross-
Pitaevskii regime, to the regime of infinitely strong inter-
actions corresponding to the Tonks-Girardeau (TG) gas of
hard-core bosons [25,26]. In all regimes, the interference
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contrast decreases with the reduction of the local phase
coherence length. Moreover, in the weakly interacting
regime, where the interference contrast is typically high,
we show that thermal and quantum fluctuations can
dramatically reduce the contrast due to shot-to-shot fluc-
tuations in the position of interference fringes.
Ideal Bose gas.—We begin our analysis with the simplest

case of an ideal Bose gas. For analytical insight, we consider
the initial wave function Ψðx; 0Þ ¼ ψbgð1þ βe−x

2=2σ2Þ,
prepared prior to time t ¼ 0 as the ground state of a suitably
chosen dimple potential, which subsequently evolves in a
uniform potential of length L with periodic boundary
conditions. The Gaussian bump has a width σ and amplitude
β above a (real) constant background ψbg which fixes the
normalization of the wave function to unity in the single-
particle case, or to the total number of particles N in the
system [27]. The dimensionless density ρ̄bg ¼ ρbgL ¼
jψbgj2L ¼ Nbg gives the number of particles in the
background, with N ¼ Nbgf1þ ð ffiffiffi

π
p

βσ=LÞ½βerfðL=2σÞþ
2

ffiffiffi

2
p

erfðL=2 ffiffiffi

2
p

σÞ�g. The wave function Ψðx; 0Þ evolves
according to the time-dependent Schrödinger equation,
whose solution can be written as

Ψðx; tÞ ¼ ψbg

�

1þ βσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2 þ iℏt=m
p e−x

2=2ðσ2þiℏt=mÞ
�

: ð1Þ

The corresponding density profile ρðx; tÞ ¼ jΨðx; tÞj2 is
shown in Fig. 1(a) at different dimensionless times τ ¼ t=t0
(and before significant reflections off the boundary), where
t0 ¼ mL2=ℏ is the timescale, and m is the mass of the
particles. As we see, ρðx; tÞ displays all the known hall-
marks of dispersive shock waves from the GPE (see below).
In particular, the shock wave oscillations are chirped, with
high-frequency and small-amplitude components located
at the shock front. The wave function (1) can be rewritten
as Ψðx; tÞ ¼ ψbg½1þ Bðx; tÞeiφðx;tÞ�, so that the density
ρðx; tÞ ¼ jΨðx; tÞj2 acquires a textbook form of quantum
mechanical interference, ρðx; tÞ ¼ ψ2

bg½1þ Bðx; tÞ2þ
2Bðx; tÞ cosφðx; tÞ�, with the amplitude Bðx; tÞ≡ fðβσÞ=
ð½σ4 þ ℏ2t2=m2�1=4Þge−x2σ2=2½σ4þℏ2t2=m2� and phase φðx; tÞ≡
fðℏtx2Þ=ð2m½σ4 þ ℏ2t2=m2�Þg − 1

2
atanðℏ2t2=m2σ4Þ. This

means that the period of oscillations in the bulk of the
shock train is ∼2σ (with σ being the only relevant length
scale in the problem), whereas the amplitude scales
as ∝ βσ=

ffiffi

t
p

.
Weakly interacting Bose gas in the GPE regime.—We

now move to consider repulsive pairwise delta-function
interactions of strength g, and find ourselves in the realm of
the Lieb-Liniger model [24,31,32]. For a uniform system,
the relevant dimensionless interaction parameter is
γ ¼ mg=ℏ2ρ, where ρ is the 1D density. For a nonuniform
gas with a local density bump, one can introduce a local
interaction parameter γðxÞ ¼ mg=ℏ2ρðxÞ and use, e.g., the

background value γbg ¼ mg=ℏ2ρbg as the global interaction
parameter to characterise the initial state (in addition to
specifying the height and width of the bump). The weakly
interacting regime of the Lieb-Liniger gas corresponds to
γbg ≪ 1 [hence γðxÞ ≪ 1 at any other x within the bump],
and the zero-temperature (T ¼ 0) dynamics of the system
can be approximated by the GPE for the complex mean-
field amplitude Ψðx; tÞ:

iℏ∂tΨðx; tÞ ¼
�

−
ℏ2

2m
∂xx þ gjΨðx; tÞj2

�

Ψðx; tÞ: ð2Þ

Dispersive shock waves forming under the GPE are
shown in Figs. 1(b) and 1(c), and are qualitatively similar to
those in the ideal Bose gas. The interfering nature of the
density ripples in this regime, where we no longer have an
explicit analytic solution, can be revealed [32] via a wavelet
transform known from signal processing theory [33–36].
The only difference that arises here is that the interaction
term in the GPE sets up a new lengthscale in the problem—
the healing length lh ¼ ℏ= ffiffiffiffiffiffiffiffiffiffiffiffimgρbg

p of the background. The
healing length decreases with increasing interactions, and
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FIG. 1. Dispersive shock waves in an ideal and weakly
interacting 1D Bose gas at T ¼ 0. In (a), we show the single-
particle probability densities ρðx; tÞ ¼ jΨðx; tÞj2 for the ideal gas
at different dimensionless times τ, for β ¼ 1 and σ=L ¼ 0.02.
Due to the reflectional symmetry about the origin, we only show
the densities for x > 0. In (b) and (c), we show the density
profiles in the weakly interacting regime at two instances of time,
with the GPE simulations represented by solid (grey and blue)
lines. We also show the results of stochastic phase-space
simulations [28] using the truncated Wigner (W) and positive-
P (þP) approaches, which incorporate the effects of vacuum
fluctuations (see text). The shape of ρðx; 0Þ (not shown) in (b) and
(c) is the same as in (a), except that it is now normalized
to N: (b) N ¼ 50, γbg ¼ 0.1; (c) N ¼ 2000, γbg ¼ 0.01 [30]. The
dimensionless healing length lh=L ¼ 1= ffiffiffiffiffiffi

γbg
p Nbg is lh=L ≃ 0.072

in (b), and lh=L ≃ 0.0057 in (c), which can be compared to
σ=L ¼ 0.02.
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as soon as it becomes the shortest lengthscale in the
problem (hence determining the effective UV momentum
cutoff) it overtakes the role of σ in determining the
characteristic period of interference oscillations. An exam-
ple of this scenario is shown in Fig. 1(c): here, the initial
density profile is in the Thomas-Fermi regime (where the
mean-field interaction energy per particle is much larger
than the kinetic energy) with lh < σ, and the characteristic
period of oscillations is ∼2lh. The trailing interference
fringe of the shock wave train propagates approximately at
the speed of sound cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gρbg=m
p

at the background
density ρbg, obtained from the Bogolibov spectrum of ele-
mentary excitations [24].
The GPE can be equivalently formulated in terms of

superfluid hydrodynamics via Madelung’s transformation to
the density and phase variables, Ψðx; tÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ρðx; tÞp

eiϕðx;tÞ,
and the velocity field vðx; tÞ ¼ ðℏ=mÞ∂xϕðx; tÞ, which
yields

∂tρ ¼ −∂xðρvÞ; ð3Þ

∂tv ¼ −∂x

�

1

2
v2 þ gρ

m
−

ℏ2

2m2

1
ffiffiffi

ρ
p ∂xx

ffiffiffi

ρ
p �

: ð4Þ

The last (dispersive) term in Eq. (4) is referred to as the
quantum pressure term; it is this term that governs the
formation of the oscillatory wave train in the hydrodynamic
approach.
The same quantum pressure term arises in the hydro-

dynamiclike formulation of the single-particle Schrödinger
equation after applying Madelung’s transformation to the
quantum mechanical wave function. This means that in the
ideal Bose gas case, with g ¼ 0 in the above hydrodynamic
equations, it is again the quantum pressure term that is
responsible for producing dispersive shock wave oscilla-
tions in Fig. 1(a). We note then, that the interaction g is not
necessary for the formation of the oscillatory shock wave

train, and as such these oscillations cannot generally be
interpreted as a train of gray solitons [6,23] that do require
the interactions to balance the wave dispersion.
Strongly interacting and Tonks-Girardeau regimes.—

We now extend our analysis to increasingly stronger
interaction strengths, from γbg ∼ 1 to the TG limit of
γbg → ∞ [24–26]. The shock wave dynamics in this regime
are shown in Fig. 2 and are simulated using infinite matrix
product states (iMPS) [32], starting from the ground state of
a dimple potential VðxÞ. The key observation here is that
the amplitude of shock wave oscillations (i.e., the inter-
ference contrast) goes down with increasing γbg due to the
reduction of the local phase coherence length of the gas.
The phase coherence length of a 1D Bose gas crosses over
from essentially the size of the system in the GPE regime
down to the mean interparticle separation 1=ρbg in the limit
of γbg ≫ 1 [72]. Furthermore, for γbg ≫ 1, the initial
ground state density profile exhibits small-amplitude
Friedel oscillations [73], with a characteristic period equal
to the mean interparticle separation 1=ρbg. This means that
discerning between the deformations of these preexisting
oscillations and shock wave interference fringes, which
form dynamically, becomes ambitious especially when the
width σ is on the same order of magnitude as 1=ρbg.
These observations become more evident in the TG limit

of γbg → ∞, where the mean interparticle separation in the
background becomes the shortest length scale in the
problem, related to the Fermi wavelength λF ¼ 2π=kF
(with kF ¼ πρbg being the Fermi wave vector at the
background density) via 1=ρbg ¼ λF=2. Examples of evolv-
ing density profiles in the TG limit, obtained using exact
diagonalization of a free fermion Hamiltonian and iMPS
simulations [32], are shown in Figs. 2(d) and 2(e) for a
relatively wide and a very narrow density bump. As we see
in Fig. 2(d), dispersive shock wave oscillations in the TG
gas do not form [74] when the width of the bump σ is larger
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FIG. 2. Shock waves in a 1D Bose gas at T ¼ 0 for intermediate and strong interactions. In all panels, the iMPS simulation results are
shown as full lines; in (d) and (e), the iMPS results are compared with exact diagonalization results (dotted lines), and show excellent
agreement. In (a)–(c), the trapping potential is chosen as V̄ðξÞ ¼ −V̄bg½1þ β expð−ξ2=2σ̄2Þ�2, with σ̄ ¼ 0.02 in all cases, and:
(a) β ¼ 0.98, V̄bg ¼ 1849 (resulting in Nbg ≃ 43.2); (b) β ¼ 0.7, V̄bg ¼ 18705 (Nbg ≃ 43.6); (c) β ¼ 0.38, V̄bg ¼ 92450 (Nbg ≃ 43).
Here, V̄ðξÞ≡ VðxÞ=E0, with E0 ¼ ℏ2=mL2 being the energy scale. In (d), the trapping potential is chosen according to Eq. (S33) of
[32], with Nbg ¼ 44.03, β ¼ 1, and σ̄ ¼ 0.02; in the Thomas-Fermi approximation, this would produce exactly the same initial density
profile as in Fig. 1(a), which, however, would not display the Friedel oscillations seen here. In (e), the trapping potential has the same
shape as the one used for producing the ideal Bose gas initial density profile of Fig. 1(a), except normalized to N ¼ 4.
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than the phase coherence length 1=ρbg. The small density
ripples seen in this case are simply evolving deformations
of the initial Friedel oscillations [75]. When, however,
σ < 1=ρbg, as in Fig. 2(e), we do observe small-scale
dispersive shock waves, confined initially within a single
Friedel-oscillation period of 1=ρbg ¼ λF=2. The character-
istic period of interference fringes in this case is determined
by σ as it is now the shortest length scale in the problem.
The effects of thermal and vacuum fluctuations.—In

order to understand the effect of thermal fluctuations on
dispersive shock waves, we consider the finite temperature
quasicondensate regime of the 1D Bose gas [37,44,69,
76–78]. This regime still corresponds to weak interactions,
γbg ≪ 1, but we focus on temperatures of the initial thermal
state lying within γbg ≲ T̄ ≲ ffiffiffiffiffiffi

γbg
p [69,77], where T̄ ¼

T=Td is the dimensionless temperature, Td ¼ ℏ2ρ2bg=2mkB
is the temperature of quantum degeneracy of the gas at
density ρbg, and kB is the Boltzmann constant [79]. In this
range of temperatures, which are most readily accessible in
ultracold atom experiments [78,80,81], the density-density
correlations of the gas are dominated by thermal rather than
vacuum fluctuations [69,77]. Accordingly, the shock
wave dynamics can be simulated using c-field techniques

]45–47 ], which involve preparation of the initial thermal
equilibrium state using the stochastic projected Gross-
Pitaevskii equation (SPGPE) and subsequent real-time
evolution according to the GPE.
Examples of SPGPE simulations are shown in Fig. 3 for

the same parameters as in Fig. 1(c), but for two nonzero
temperatures. As expected, the interference contrast is
significantly reduced (compared to GPE results) due to
thermal fluctuations and the resulting loss of phase coher-
ence. Indeed, in the quasicondensate regime with density
ρbg, the thermal phase coherence length is given by
lT ¼ ℏ2ρbg=mkBT. From this estimate one can expect that
the self-interfering shock wave train would lose its contrast
when lT becomes on the order of or smaller than the width
of the bump σ, with oscillations eventually disappearing at
sufficiently high temperatures. This is indeed what we see
in Fig. 3. However, the interference contrast in the example
of Fig. 3(a) is essentially lost at temperatures for which lT is
still larger than σ; this can be explained by the shot-to-shot
fluctuations in the position of interference fringes due to the
same thermal fluctuations. Indeed, as can be seen from
samples of individual stochastic SPGPE trajectories (shown
as thin lines), even though these individual trajectories
show high-contrast interference fringes (albeit with sto-
chastic noise also present), the overall ensemble average
over thousands of SPGPE realizations shows much lower
interference contrast. This observation is consistent with
the interpretation of the individual SPGPE trajectories
representing individual experimental runs [47], whereas
the mean density corresponds to the ensemble average over
many runs.

Finally, we consider the effect of quantum fluctuations
on the shock wave interference contrast in the weakly
interacting regime at T ¼ 0. These are treated using two
stochastic phase-space methods, the truncated Wigner and
positive-P approaches [48], and the iMPS method. The
stochastic simulation results are shown in Figs. 1(b) and
1(c), and are directly comparable to those based on the
mean-field GPE. For the parameters of Fig. 1(b) (very weak
interactions), the truncated Wigner and positive-P results
agree with each other (in addition to being in excellent
agreement with iMPS results [32]) within the respective
error bars, and are close to the GPE results. In this regime,
the quantum fluctuations have a negligible effect on the
mean density and the interference contrast. For the param-
eters of Fig. 1(c), on the other hand, the interactions are
stronger (with the period of shock wave oscillations
determined by lh rather than σ) and the quantum fluctua-
tions have a more profound effect: the interference contrast
is visibly reduced compared to the GPE prediction [82].
This is similar to the effect of thermal fluctuations
discussed above, and can be attributed to shot-to-shot
fluctuations in the position of interference fringes around
the mean.
Conclusions.—We have shown that the mechanism of

formation of dispersive shock wave trains in a 1D Bose gas
is quantum interference: the local perturbation self-
interferes with its own background upon expanding into
it. The interference contrast in this picture goes down with
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FIG. 3. Shock waves in a finite-temperature quasicondensate
from SPGPE simulations (thick red lines). Shown are the
final-time (τ ¼ 0.0007) density distributions for x > 0 and two
different initial dimensionless temperatures: (a) T̄ ¼ 0.01, and
(b) T̄ ¼ 0.1 [79]. Other parameters are as in Fig. 1 (c); the GPE
results are shown here again as blue lines for comparison.
The dimensionless thermal phase coherence length here can
be expressed as lT=L ¼ 2=ðT̄ NbgÞ, giving: (a) lT=L ≃ 0.1,
(b) lT=L ≃ 0.01. The SPGPE mean densities are the averages
over 100 000 stochastic trajectories, whereas the thin lines show
two sample trajectories.
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the reduction of the phase coherence length of the gas, and
the picture holds true for all interaction strengths. We have
also shown that thermal and quantum fluctuations can
reduce the interference contrast further due to shot-to-shot
fluctuations in the position of interference fringes around
the mean. In the TG limit of infinitely strong interactions,
where the phase coherence length is the same as the mean
interparticle separation, the shock wave oscillations are
absent for a sufficiently wide density bump (wider than the
mean interparticle separation). Apart from explaining the
origin of density ripples in dispersive quantum shock
waves, our results may serve as a test bed for new
theoretical and computational techniques for many-body
dynamics, such as the generalized hydrodynamics [83–86],
and may shed new light on the understanding of dispersive
shock waves in a variety of other contexts, such as in
electronic systems described by the Calogero-Sutherland
model and Korteweg–de Vries equations [1,8,87], or
superfluids with higher-order dispersion [88].
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[31] M. Olshanii, Phys. Rev. Lett. 81, 938 (1998).
[32] See the Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.125.180401 for the de-
tails of the Lieb-Liniger model [24,31], the wavelet trans-
form [33–36], and the various theoretical and computational
approaches used in our study: the mean-field GPE, modified
GPE, and the associated hydrodynamic approaches [37–43];
c-field methods based on the SPGPE [37,44–47]; truncated
Wigner and positive-P methods [47–54]; iMPS [55–68];
and exact diagonalization in the TG regime [25,69–71].

[33] C. H. Baker, D. A. Jordan, and P. M. Norris, Phys. Rev. B
86, 104306 (2012).

[34] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 116, 061102 (2016).

PHYSICAL REVIEW LETTERS 125, 180401 (2020)

180401-5

https://doi.org/10.1016/j.physd.2016.04.006
https://doi.org/10.1016/j.physd.2016.04.006
https://doi.org/10.1126/science.1062527
https://doi.org/10.1126/science.1062527
https://doi.org/10.1103/PhysRevA.69.043610
https://doi.org/10.1103/PhysRevLett.94.080404
https://doi.org/10.1103/PhysRevLett.94.080404
https://doi.org/10.1103/PhysRevA.74.023623
https://doi.org/10.1103/PhysRevA.74.023623
https://doi.org/10.1103/PhysRevLett.101.170404
https://doi.org/10.1103/PhysRevLett.101.170404
https://doi.org/10.1103/PhysRevA.80.043606
https://doi.org/10.1103/PhysRevA.80.043606
https://doi.org/10.1103/PhysRevA.86.033614
https://doi.org/10.1103/PhysRevA.86.033614
https://doi.org/10.1103/PhysRevLett.108.150401
https://doi.org/10.1103/PhysRevLett.108.150401
https://doi.org/10.1103/PhysRevA.89.013621
https://doi.org/10.1103/PhysRevLett.24.206
https://doi.org/10.1103/PhysRevLett.24.206
https://doi.org/10.1088/0032-1028/19/4/008
https://doi.org/10.1103/PhysRevLett.110.084802
https://doi.org/10.1103/PhysRevLett.110.084802
https://doi.org/10.1016/j.physb.2007.02.006
https://doi.org/10.1016/j.physb.2007.02.006
https://doi.org/10.1038/ncomms9993
https://doi.org/10.1103/PhysRevA.88.013605
https://doi.org/10.1103/PhysRevA.88.013605
https://doi.org/10.1038/s41467-018-07147-4
https://doi.org/10.1103/RevModPhys.71.463
https://doi.org/10.1103/PhysRevLett.62.531
https://doi.org/10.1103/PhysRevLett.62.531
https://doi.org/10.1038/nphys486
https://doi.org/10.1016/j.physd.2008.08.021
https://doi.org/10.1016/j.physd.2008.08.021
https://doi.org/10.1103/PhysRev.130.1605
https://doi.org/10.1103/PhysRev.130.1616
https://doi.org/10.1063/1.1703687
https://doi.org/10.1103/PhysRev.139.B500
https://doi.org/10.1016/j.cpc.2012.08.016
https://doi.org/10.1016/j.cpc.2012.08.016
https://doi.org/10.1103/PhysRevLett.81.938
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.180401
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.180401
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.180401
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.180401
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.180401
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.180401
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.180401
https://doi.org/10.1103/PhysRevB.86.104306
https://doi.org/10.1103/PhysRevB.86.104306
https://doi.org/10.1103/PhysRevLett.116.061102


[35] D. Colas and F. P. Laussy, Phys. Rev. Lett. 116, 026401
(2016).

[36] D. Colas, F. P. Laussy, and M. J. Davis, Phys. Rev. Lett. 121,
055302 (2018).

[37] I. Bouchoule, S. S. Szigeti, M. J. Davis, and K. V.
Kheruntsyan, Phys. Rev. A 94, 051602(R) (2016).

[38] M. D. Girardeau and E. M. Wright, Phys. Rev. Lett. 84,
5239 (2000).

[39] Y. Y. Atas, D. M. Gangardt, I. Bouchoule, and K. V.
Kheruntsyan, Phys. Rev. A 95, 043622 (2017).

[40] Y. Y. Atas, I. Bouchoule, D. M. Gangardt, and K. V.
Kheruntsyan, Phys. Rev. A 96, 041605(R) (2017).

[41] B. Damski, Phys. Rev. A 73, 043601 (2006).
[42] E. B. Kolomeisky, T. J. Newman, J. P. Straley, and X. Qi,

Phys. Rev. Lett. 85, 1146 (2000).
[43] S. Choi, V. Dunjko, Z. D. Zhang, and M. Olshanii, Phys.

Rev. Lett. 115, 115302 (2015).
[44] I. Bouchoule, M. Arzamasovs, K. V. Kheruntsyan, and

D.M. Gangardt, Phys. Rev. A 86, 033626 (2012).
[45] Y. Castin, R. Dum, E. Mandonnet, A. Minguzzi, and I.

Carusotto, J. Mod. Opt. 47, 2671 (2000).
[46] M. J. Davis, S. A. Morgan, and K. Burnett, Phys. Rev. Lett.

87, 160402 (2001).
[47] P. B. Blakie, A. S. Bradley, M. J. Davis, R. J. Ballagh, and

C.W. Gardiner, Adv. Phys. 57, 363 (2008).
[48] M. J. Steel, M. K. Olsen, L. I. Plimak, P. D. Drummond, S.

M. Tan, M. J. Collett, D. F. Walls, and R. Graham, Phys.
Rev. A 58, 4824 (1998).

[49] A. D. Martin and J. Ruostekoski, New J. Phys. 12, 055018
(2010).

[50] P. D. Drummond and C.W. Gardiner, J. Phys. A 13, 2353
(1980).

[51] A. Gilchrist, C. W. Gardiner, and P. D. Drummond, Phys.
Rev. A 55, 3014 (1997).

[52] C. M. Savage, P. E. Schwenn, and K. V. Kheruntsyan, Phys.
Rev. A 74, 033620 (2006).

[53] P. Deuar and P. D. Drummond, Phys. Rev. Lett. 98, 120402
(2007).

[54] A. Perrin, C. M. Savage, D. Boiron, V. Krachmalnicoff, C. I.
Westbrook, and K. V. Kheruntsyan, New J. Phys. 10,
045021 (2008).

[55] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[56] I. P. McCulloch, J. Stat. Mech. (2007) P10014.
[57] U. Schollwck, Ann. Phys. (Amsterdam) 326, 96 (2011).
[58] M. A. Cazalilla, Phys. Rev. A 67, 053606 (2003).
[59] B. Schmidt, L. I. Plimak, and M. Fleischhauer, Phys. Rev. A

71, 041601(R) (2005).
[60] B. Schmidt and M. Fleischhauer, Phys. Rev. A 75, 021601

(R) (2007).
[61] D. Muth, B. Schmidt, and M. Fleischhauer, New J. Phys. 12,

083065 (2010).
[62] D. Muth, M. Fleischhauer, and B. Schmidt, Phys. Rev. A 82,

013602 (2010).
[63] I. P. McCulloch, arXiv:0804.2509.
[64] H. N. Phien, G. Vidal, and I. P. McCulloch, Phys. Rev. B 86,

245107 (2012).
[65] G. Vidal, Phys. Rev. Lett. 98, 070201 (2007).
[66] A. J. Daley, C. Kollath, U. Schollwöck, and G. Vidal, J. Stat.

Mech. (2004) P04005.

[67] S. R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401
(2004).

[68] T. Barthel and Y. Zhang, Ann. Phys. (Amsterdam) 418,
168165 (2020).

[69] K. V. Kheruntsyan, D. M. Gangardt, P. D. Drummond, and
G. V. Shlyapnikov, Phys. Rev. A 71, 053615 (2005).

[70] V. Yukalov and M. Girardeau, Laser Phys. Lett. 2, 375
(2005).

[71] D. J. Griffiths, Introduction to Quantum Mechanics
(Prentice Hall International, Englewood Cliffs, NJ, 1994).

[72] M. A. Cazalilla, J. Phys. B 37, S1 (2004).
[73] J. Friedel, Nuovo Cimento (1955–1965) 7, 287 (1958).
[74] Absence of dispersive shock wave oscillations in the Tonks

limit has been conjectured in Ref. [8]. The trailing edge of
the shock wave envelope in this limit propagates approx-
imately at the respective speed of sound at the background
density, vs ¼ πℏρbg=m [24].

[75] This is in stark contrast to the predictions of a hydro-
dynamiclike description of the TG gas [41], equivalent to a
modified GPE with a quartic, rather than quadratic, non-
linear term [38,42,43], in which the interference contrast
appears similarly high (see [32]) to that in the weakly
interacting GPE regime.

[76] D. S. Petrov, G. V. Shlyapnikov, and J. T. M. Walraven,
Phys. Rev. Lett. 85, 3745 (2000).

[77] K. V. Kheruntsyan, D. M. Gangardt, P. D. Drummond, and
G. V. Shlyapnikov, Phys. Rev. Lett. 91, 040403 (2003).

[78] T. Jacqmin, J. Armijo, T. Berrada, K. V. Kheruntsyan, and I.
Bouchoule, Phys. Rev. Lett. 106, 230405 (2011).

[79] The dimensionless temperature parameters T̄ and T̄¼
kBT=E0 (with E0 ¼ ℏ2=mL2) are related by T̄ ¼
2T̄=ρ̄2bg ¼ 2T̄=N2

bg.
[80] A. H. van Amerongen, J. J. P. van Es, P. Wicke, K. V.

Kheruntsyan, and N. J. van Druten, Phys. Rev. Lett. 100,
090402 (2008).

[81] I. Bouchoule, N. J. van Druten, and C. I. Westbrook, Atom
chips and one-dimensional Bose gases, in Atom Chips
(Wiley-VCH Verlag GmbH & Co. KGaA, New York,
2011), pp. 331–363.

[82] For the parameters of Fig. 1(b), the iMPS results are in
excellent agreement with the truncatedWigner and positive-P
results, and are omitted from the figure for clarity, whereas for
the parameters of Fig. 1(c), the iMPS method is computa-
tionally intractable due to the large number of particles in the
system. The positive-P approach for Fig. 1(c) is similarly
computationally intractable due to large sampling errors.

[83] B. Doyon, J. Dubail, R. Konik, and T. Yoshimura, Phys.
Rev. Lett. 119, 195301 (2017).

[84] O. A. Castro-Alvaredo, B. Doyon, and T. Yoshimura, Phys.
Rev. X 6, 041065 (2016).

[85] B. Bertini, M. Collura, J. De Nardis, and M. Fagotti, Phys.
Rev. Lett. 117, 207201 (2016).

[86] R. Dubessy, J. Polo, H. Perrin, A. Minguzzi, and M. Olshanii,
arXiv:2007.05252 [Phys. Rev. Lett. (to be published)].

[87] E. Bettelheim, A. G. Abanov, and P. Wiegmann, Phys. Rev.
Lett. 97, 246401 (2006).

[88] M. E. Mossman, E. S. Delikatny, M. M. Forbes, and P.
Engels, arXiv:2004.00832.

PHYSICAL REVIEW LETTERS 125, 180401 (2020)

180401-6

https://doi.org/10.1103/PhysRevLett.116.026401
https://doi.org/10.1103/PhysRevLett.116.026401
https://doi.org/10.1103/PhysRevLett.121.055302
https://doi.org/10.1103/PhysRevLett.121.055302
https://doi.org/10.1103/PhysRevA.94.051602
https://doi.org/10.1103/PhysRevLett.84.5239
https://doi.org/10.1103/PhysRevLett.84.5239
https://doi.org/10.1103/PhysRevA.95.043622
https://doi.org/10.1103/PhysRevA.96.041605
https://doi.org/10.1103/PhysRevA.73.043601
https://doi.org/10.1103/PhysRevLett.85.1146
https://doi.org/10.1103/PhysRevLett.115.115302
https://doi.org/10.1103/PhysRevLett.115.115302
https://doi.org/10.1103/PhysRevA.86.033626
https://doi.org/10.1080/09500340008232189
https://doi.org/10.1103/PhysRevLett.87.160402
https://doi.org/10.1103/PhysRevLett.87.160402
https://doi.org/10.1080/00018730802564254
https://doi.org/10.1103/PhysRevA.58.4824
https://doi.org/10.1103/PhysRevA.58.4824
https://doi.org/10.1088/1367-2630/12/5/055018
https://doi.org/10.1088/1367-2630/12/5/055018
https://doi.org/10.1088/0305-4470/13/7/018
https://doi.org/10.1088/0305-4470/13/7/018
https://doi.org/10.1103/PhysRevA.55.3014
https://doi.org/10.1103/PhysRevA.55.3014
https://doi.org/10.1103/PhysRevA.74.033620
https://doi.org/10.1103/PhysRevA.74.033620
https://doi.org/10.1103/PhysRevLett.98.120402
https://doi.org/10.1103/PhysRevLett.98.120402
https://doi.org/10.1088/1367-2630/10/4/045021
https://doi.org/10.1088/1367-2630/10/4/045021
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1088/1742-5468/2007/10/P10014
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/PhysRevA.67.053606
https://doi.org/10.1103/PhysRevA.71.041601
https://doi.org/10.1103/PhysRevA.71.041601
https://doi.org/10.1103/PhysRevA.75.021601
https://doi.org/10.1103/PhysRevA.75.021601
https://doi.org/10.1088/1367-2630/12/8/083065
https://doi.org/10.1088/1367-2630/12/8/083065
https://doi.org/10.1103/PhysRevA.82.013602
https://doi.org/10.1103/PhysRevA.82.013602
https://arXiv.org/abs/0804.2509
https://doi.org/10.1103/PhysRevB.86.245107
https://doi.org/10.1103/PhysRevB.86.245107
https://doi.org/10.1103/PhysRevLett.98.070201
https://doi.org/10.1088/1742-5468/2004/04/P04005
https://doi.org/10.1088/1742-5468/2004/04/P04005
https://doi.org/10.1103/PhysRevLett.93.076401
https://doi.org/10.1103/PhysRevLett.93.076401
https://doi.org/10.1016/j.aop.2020.168165
https://doi.org/10.1016/j.aop.2020.168165
https://doi.org/10.1103/PhysRevA.71.053615
https://doi.org/10.1002/lapl.200510011
https://doi.org/10.1002/lapl.200510011
https://doi.org/10.1088/0953-4075/37/7/051
https://doi.org/10.1007/BF02751483
https://doi.org/10.1103/PhysRevLett.85.3745
https://doi.org/10.1103/PhysRevLett.91.040403
https://doi.org/10.1103/PhysRevLett.106.230405
https://doi.org/10.1103/PhysRevLett.100.090402
https://doi.org/10.1103/PhysRevLett.100.090402
https://doi.org/10.1103/PhysRevLett.119.195301
https://doi.org/10.1103/PhysRevLett.119.195301
https://doi.org/10.1103/PhysRevX.6.041065
https://doi.org/10.1103/PhysRevX.6.041065
https://doi.org/10.1103/PhysRevLett.117.207201
https://doi.org/10.1103/PhysRevLett.117.207201
https://arXiv.org/abs/2007.05252
https://doi.org/10.1103/PhysRevLett.97.246401
https://doi.org/10.1103/PhysRevLett.97.246401
https://arXiv.org/abs/2004.00832

