
PHYSICAL REVIEW E 92, 032142 (2015)

Exact work statistics of quantum quenches in the anisotropic XY model
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We derive exact analytic expressions for the average work done and work fluctuations in instantaneous
quenches of the ground and thermal states of a one-dimensional anisotropic XY model. The average work and a
quantum fluctuation relation is used to determine the amount of irreversible entropy produced during the quench,
eventually revealing how the closing of the excitation gap leads to increased dissipated work. The work fluctuation
is calculated and shown to exhibit nonanalytic behavior as the prequench anisotropy parameter and transverse
field are tuned across quantum critical points. Exact compact formulas for the average work and work fluctuation
in ground state quenches of the transverse field Ising model allow us to calculate the first singular field derivative
at the critical field values.
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I. INTRODUCTION

A quantum quench (or nonadiabatic change in the system
Hamiltonian) of an isolated many-body system generally leads
to a state that is far from equilibrium. In particular, a thermal
state ρ0 = e−βH0/ tr e−βH0 does not generally evolve into a
canonically distributed (Gibbs) state by unitary dynamics
under a different Hamiltonian H1 [1]. There is much interest
in the study of these highly excited quenched states, especially
when the quench is done about a quantum critical point,
because of the possibility of observing universal phenomena
[2–6], dynamical phase transitions [7], quantum revivals or
thermalization [8–14], and singular behavior in the ther-
modynamic limit [15–20]. Also, when the quench involves
interaction parameters that couple different subsystems within
a system, nontrivial correlations and entanglement may be
generated between these subsystems [21–23]. Thus, it has been
suggested that quench-based protocols may be used to measure
entanglement entropies [24].

Furthermore, when a quantum quench is viewed as a
thermodynamic process, it can lead to dynamically gener-
ated quantum fluctuations that are described by generalized
fluctuation relations [25–27]. For example, the work done
on a quenched isolated system is described by a probability
distribution whose characteristic function takes the form of a
two-time correlation function [28]. This correlation function
can be expressed in terms of free energy differences of a
system in effective thermal equilibrium [29,30]. This emerging
thermodynamic description therefore opens up the possibility
of the use of thermodynamic (statistical) methods in the
description of isolated quantum systems driven away from
equilibrium (cf. Refs. [14,15,17,18,31–34]).

In this paper, we continue previous investigations on the
work done in quenched quantum chains. In particular, our
emphasis is on the theoretical analysis of the statistics of work
done in arbitrary quenches of the ground and thermal states of
the XY model following the formalism developed in Ref. [28].
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Work statistics have been studied in other quenched systems
such as the transverse field Ising model [7,15,18,35], the XXZ
model [36,37] and integrable field theories [6,20], Luttinger
liquids [35], low-dimensional quantum gases [4,19,36,38],
critical spin-boson models [31], and optomechanical systems
[39]. These theoretical studies have recently been comple-
mented by experimental interferometric measurements of the
probability distribution of work done on quenched gases of
two-level systems [40–42]. Such measurements have also been
viewed from a quantum information perspective, where the
measurement of work done is considered as a generalized
quantum measurement [a positive operator valued measure
(POVM)] [43].

The results of this study can be divided into two main parts.
In the first part, we report a calculation of the average work
done in an isolated quenched XY chain (Sec. III). When the
system is initially in a canonically distributed state ρ0, the
quench is associated with the production of a so-called irre-
versible entropy �Sirr, which may be interpreted as a measure
of the irreversibility of the quench [18,44–48]. Indeed, in an
instantaneous quench �Sirr can be expressed mathematically
as the relative entropy (Kullback-Leibler divergence) between
the probability distributions of work done in the forward
quench protocol and the reversed protocol (with initial and
final Hamiltonians swapped) [18]. Additionally, �Sirr has been
recently proposed as an experimentally accessible quantity
that may be used to establish the arrow of time in isolated
quantum systems [49]. We give an exact solution for �Sirr for
arbitrary sets of pre- and postquench Hamiltonian parameters
and examine sharp increases in irreversible entropy production
about quantum criticality.

Second, we calculate the fluctuation in the work done in
an arbitrary ground state quench and obtain exact contour
integral representations in the thermodynamic limit (Sec. IV).
We find that the work fluctuation is generally not an analytic
function of the prequench (but not postquench) Hamiltonian
parameters along the quantum critical lines. For quenches
done on thermally mixed states, a numerical analysis reveals
that this nonanalytic behavior is weakened in the sense that
singular behavior begins to appear in higher-order derivatives.
These results suggest that quench protocols may be used to
locate quantum critical points in systems with unknown phase
diagrams.

1539-3755/2015/92(3)/032142(9) 032142-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.032142


FRANCIS A. BAYOCBOC, JR. AND FRANCIS N. C. PARAAN PHYSICAL REVIEW E 92, 032142 (2015)

Past investigations of quenches in the one-dimensional
XY model have focused on the time evolution (quench
dynamics) of correlation functions [50–54], the Loschmidt
echo [3], defect production [50,55–57], and entanglement
measures [13,21,50,58]. Detailed theoretical analyses of the
work statistics have been performed for quenches along the
transverse field Ising line of the XY model [15,18], and we
therefore emphasize in this paper the effects of anisotropy on
the average work and work fluctuations. Still, we are able to
report some new exact formulas for the average work (11)
and work fluctuation (30) along the Ising line to complement
these previous studies. The overall contribution of our analytic
results is therefore the completion of the study of work
statistics of quantum quenches in the full parameter space
of the XY model.

II. MODEL AND DERIVATIONS

A. XY model and quench protocol

The one-dimensional ferromagnetic XY model Hamiltonian
is

H = −1

2

N∑
j=1

[
1 + γ

2
σx

j σ x
j+1 + 1 − γ

2
σ

y

j σ
y

j+1 + hσ z
j

]
, (1)

with anisotropy parameter γ , transverse field h, and σa
j the

Pauli a matrix on site j . We impose periodicity on the spin
chain so that σa

N+1 = σa
1 .

The XY Hamiltonian can be diagonalized by a sequence of
transforms: a Jordan-Wigner transform to spinless fermionic
operators, a Fourier transformation into momentum space,
and a Bogolyubov rotation to obtain a noninteracting fermion
theory. The final result is

H =
N−1∑
n=0

ε(qn)
(
χ †

nχn − 1
2

)
, (2)

where χ
†
n and χn are canonical fermion creation and annihila-

tion operators, respectively [59]. The dispersion relation ε(qn)
is

ε(qn) = [(h − cos qn)2 + γ 2 sin2 qn]1/2, (3)

and qn = 2πn/N for odd N or qn = 2π (n + 1
2 )/N for even

N . In the thermodynamic limit N → ∞ the effects of N being
odd or even are negligible.

The phase diagram of the XY model is given in Fig. 1. The
excitation gap vanishes along the critical field lines (h = ±1)
and the critical isotropic line (γ = 0 and |h| < 1), and the
system is quantum critical in these regions.

We consider here quench protocols in which the initial
Hamiltonian H0 has anisotropy parameter γ0 and field h0 and
is instantaneously changed to the final Hamiltonian H1 with
corresponding parameters γ1 and h1. This quench is performed
with the system initially prepared in a canonically distributed
mixed state ρ0 = e−βH0/ tr e−βH0 at an effective reciprocal
temperature β = (kT )−1, or in the ground state ρ0 = |0〉〈0|
of H0 at effective zero temperature β → ∞. The system is
isolated and is not in contact with a thermal bath during the
quench. The work done W during the quench is defined as

h

P+P FX

FY

1 +10

FIG. 1. (Color online) Phase diagram of the XY model showing
the quantum critical lines (thick red lines). The anisotropy parameter
is γ , and the transverse magnetic field is h. In the FX and FY phases
the ground state has ferromagnetic order in the x and y directions,
respectively. The paramagnetic P± ground state has no long-range
order on the longitudinal xy plane.

the difference between projective measurements of the system
energy after and before the quench.

B. Work statistics

The statistical properties of the probability distribution
of work done p(W ) in an instantaneous quench are most
accessible from the characteristic function

G(u,β) =
∫

eiuWp(W ) dW = tr eiuH1e−iuH0ρ0, (4)

or for a ground state quench G(u) = 〈0|eiuH1e−iuH0 |0〉 [28].
Using the known eigenstates of the XY model, the zero
temperature characteristic function G(u) can be calculated and
expressed compactly as

G(u) = eiu�E
∏
n

[cos2 �n + eiuε1(qn) sin2 �n]. (5)

Here �E = E1 − E0 is the difference between the post- and
prequench ground state energies and �n = θ1(qn) − θ0(qn) is
the difference between the post- and prequench Bogolyubov
angles that satisfy

tan[2θi(qn)] = γi sin qn

hi − cos qn

. (6)

The derivation of this characteristic function follows closely
that in the transverse field Ising case where γ0 = γ1 = 1 [18].

The cumulants of the work distribution can therefore be
generated by repeatedly differentiating the generating function
ln G. In particular, the average work done 〈W 〉 and variance in
work done �2 = 〈W 2〉 − 〈W 〉2 are

〈W 〉 = 1

i
lim
u→0

∂

∂u
ln G, (7)

�2 = 1

i2
lim
u→0

∂2

∂u2
ln G. (8)
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III. AVERAGE WORK DONE AND IRREVERSIBLE
ENTROPY

From the characteristic function (4) we can obtain the
average work done in a finite temperature quench:

〈W 〉 = 1

2

N−1∑
n=0

[ε0(qn) − ε1(qn) cos 2�n] tanh

[
βε0(qn)

2

]
. (9)

In the thermodynamic limit the sum for the average work per
spin 〈w〉 ≡ limN→∞〈W 〉/N can be transformed into a definite
integral that is solvable by quadratures:

〈w〉 = 1

4π

∫ 2π

0

[
(h0−h1)(h0− cos k)

ε0(k)
+ γ0(γ0−γ1) sin2 k

ε0(k)

]

× tanh
βε0(k)

2
dk. (10)

For a ground state quench we take β → ∞ before summing
or integrating over wave vectors. This exact expression reveals
that the average work done can be neatly divided into a
contribution from the field change (h1 − h0) and a contribution
from the anisotropy change (γ1 − γ0).

A. Ground state quench along the Ising line

For example, in a zero temperature transverse field quench
along the Ising line γ0 = γ1 = 1, the preceding integral at
β → ∞ can be evaluated exactly in terms of complete elliptic
integrals [60]:

〈w〉 = h0 − h1

πh0

{
E(h0) − (

1 − h2
0

)
K(h0), |h0| < 1,

|h0|E
(
h0

−1
)
, |h0| > 1,

(11)

where K(k) and E(k) have the integral representations

K(k) =
∫ π/2

0
(1 − k2 sin2 u)−1/2 du, (12)

E(k) =
∫ π/2

0
(1 − k2 sin2 u)1/2 du. (13)

The exact expression (11) for 〈w〉 can be cast in the more
compact form

〈w〉 = h0 − h1

πh0
|h0|E

(
h0

−1
)
, (14)

using the formula kE(k−1) = E(k) − (1 − k2)K(k) [61].
Asymptotic series expansions of this result about the pre-
quench critical fields |h0| = 1 reveal that the average work per
spin is continuous, but not infinitely differentiable, at |h0| = 1.
Specifically, logarithmic singularities are generally observed
in the field derivative about the critical field h0 = 1:

∂〈w〉
∂h0

∼ h1 − 1

2π
×

{
ln(1 − h0), h0 � 1,

ln(h0 − 1), 1 � h0,
(15)

and about the critical field h0 = −1:

∂〈w〉
∂h0

∼ h1 + 1

2π
×

{
ln(1 − |h0|), −1 � h0,

ln(|h0| − 1), h0 � −1.
(16)

An exceptional case occurs when the postquench Hamiltonian
is also at critical field. The nonanalyticity at h0 = h1 = ±1 is

weakened in the sense that the derivative ∂〈w〉/∂h0 exists at
critical h0:

∂〈w〉
∂h0

∣∣∣∣
h0=±1

= ± 1

π
, for h1 = ±1, (17)

and now the logarithmic divergence first appears in the second
derivative ∂2〈w〉/∂h2

0. To our knowledge, this is the first exact
characterization of the nonanalytic behavior of the average
work done in a quenched transverse field Ising model at
quantum criticality. (We mention, however, that logarithmic
singularities in the work fluctuation have been reported in
field quenches that are localized to a single spin site [15].)

B. Irreversible work and entropy

The average work done in a quantum quench also provides
information on the excess work (or irreversible or dissipated
work Wirr ≡ 〈W 〉 − �F ) done above the free energy change
of an analogous reversible process that takes H0 to H1 at
reciprocal temperature β. This free energy change �F is given
by the Jarzynski relation [29]

�F = − 1

β
ln G(iβ) (18)

and may be expressed in terms of effective canonical partition
functions Zi = tr e−βHi through the Tasaki-Crooks fluctuation
relation [30,62]:

�F = − 1

β
ln

Z1

Z0
= − 1

β

N−1∑
n=0

ln
cosh[βε1(qn)/2]

cosh[βε0(qn)/2]
. (19)

The irreversible work done is positive as excitations, or defects,
are produced during the quantum quench. It is then usually
associated with an irreversible entropy production according
to �Sirr = βWirr = β(〈W 〉 − �F ).

We remark that the expressions derived here for the average
work (9) and free energy change (19) are identical in form
to the corresponding equations previously obtained for the
transverse field Ising model [15,18]. The generalization to
the full XY model simply involves the modification of the
dispersion relations and Bogolyubov angles to account for
the anisotropy γ . With the full expression, however, we are
able to numerically investigate the effects of anisotropy on
the quenched model and explore critical phenomena along the
critical XX line. In the examples that follow, we study how field
quenches are modified by anisotropy and how the behavior of
anisotropy quenches depend on whether the transverse field is
above or below the critical threshold.

First, we consider small transverse field quenches δh =
h1 − h0 = 0.01 at fixed anisotropy and low temperature
β = 100. Figure 2(a) shows how the irreversible entropy is
pronounced for quenches in the vicinity of the critical field due
to the increased amount of irreversible work done in defect
production as the energy gap closes [55–57]. Accounting
for anisotropy in the XY model reveals additional features
of �Sirr than previously observed along the Ising line. For
instance, the production of irreversible entropy is greatest
about the multicritical points at the intersection of the XX
and critical field lines [seen as the peaks at h0 = ±1 of the
thick solid line in Fig. 2(a)]. Also, we observe the different
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FIG. 2. (Color online) Irreversible entropy produced per spin �sirr ≡ limN→∞ �Sirr/N at low temperature β = 100 for (a) small field
quenches δh = 0.01, and (b) small anisotropy quenches δγ = 0.01. Black arrows on the field (anisotropy) quench graph denote increasing
anisotropy |γ | (field |h|) magnitudes from 0 to 2.0 in steps of 0.2.

effect of anisotropy on small δh field quenches deep in the
ferromagnetic |h| < 1 and paramagnetic phases |h| > 1. In
the former, where ferromagnetic order is established along
the x and y directions, increasing anisotropy from |γ | = 0
decreases the irreversible entropy production, while in the
latter increasing anisotropy increases �sirr.

Second, we take a look at the case of anisotropy quenches
δγ = γ1 − γ0 = 0.01 at fixed field and low temperature β =
100. In Fig. 2(b) we see that irreversible entropy production
peaks when the quench is done about the isotropic XX line.
However, this peak is most prominent when the quench is done
within the critical region |h| < 1, again mirroring the increased
dissipated work at criticality. However, unlike the previous
case of field quenches, less irreversible entropy is produced
when the anisotropy quench is done about the multicritical
points (h = ±1) than when done across the critical XX line
at low transverse fields |h| < 1. That is, in a given anisotropy
quench about the isotropic XX region, an increasing transverse
field suppresses the production of excitations.

C. Nonzero temperature

In the limit of infinite temperature β → 0 the irre-
versible entropy �Sirr vanishes trivially as limβ→0 β〈W 〉 and
limβ→0 β�F vanish individually. In this extreme case, the pre-
and postquench states are both maximally mixed and have
zero relative entropy. In contrast, when the prequench state
is prepared at a finite nonzero temperature, the temperature
dependence of the average work (10) and free energy change
(19) are difficult to study analytically because of their
hyperbolic dependence on the energy spectrum ε0. Still, the
integrals for the irreversible entropy and irreversible work per
spin are readily evaluated by quadrature methods, and we
performed empirical studies of the temperature dependence of
these quantities. For instance, in the case of small magnitude
quenches δh = δγ = 0.01 beginning at h0 = γ0, peaks in the
irreversible work per spin wirr = �sirr/β can be examined
as three critical lines are crossed (Fig. 3). As in the case of
quenches along the Ising line [18], these peaks are caused
by increased defect production as the excitation gap closes at
criticality. Additionally, it turns out that the irreversible work

per spin wirr saturates to a constant value in the thermodynamic
limit at zero temperature; that is, it does not diverge at any
temperature. This result implies that the total irreversible
entropy, like a thermodynamic entropy, scales extensively at
all finite temperatures �Sirr ∼ N as N → ∞. Furthermore,
for these small magnitude quenches, the irreversible work
vanishes at high fields and large anisotropy at all temperatures
as the relative parameter changes δh/h0 and δγ /γ0 become
smaller [18].

Additionally, an early reviewer of this paper has pointed
out that in Fig. 3 the irreversible work per spin wirr does not
have a monotonic dependence on temperature. Since the irre-
versible work is the difference of two quantities (the average
work done and effective free energy change) with different
temperature dependence, it is reasonable to anticipate such
nonmonotonic behavior. Indeed, observations from several
numerical evaluations of the irreversible work reveals that wirr

peaks at some nonzero temperature T ∗ away from criticality.

FIG. 3. (Color online) Irreversible work per spin wirr ≡
limN→∞ Wirr/N for small magnitude ground state quenches δh =
δγ = 0.01 along the h0 = γ0 line. Three critical lines are crossed,
which correspond to peaks in the irreversible work. These peaks
become sharper as the temperature is decreased to zero (the inset
shows the peak at h0 = γ0 = 0).
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FIG. 4. (Color online) Given a small magnitude quench δh =
δγ = 0.01 at fixed h0 = γ0, the irreversible work peaks at some
nonzero temperature T ∗ (dark thick line) away from criticality (top).
The excitation gap �∗ is of the order of kT ∗ (bottom).

For several small magnitude quenches, including the previous
case along the h0 = γ0 line (Fig. 4), we have found that the
magnitude of the characteristic thermal energy kT ∗ is of the
order of the energy gap �∗. To explain this observation in
physical terms, we propose that small thermal fluctuations can
lead to increased defect production by supplying the system
with some initial energy to overcome the excitation barrier.
However, further increases in temperature far above T ∗ have
the opposite effect until wirr is completely suppressed at infinite
temperature, as expected. We also observe in Fig. 4 that there
is a discontinuity in T ∗ that is caused by two competing peaks
in the graph of wirr versus temperature. We found it difficult
to explain this feature, but our numerical results suggest that
this bimodality is due to the separate contributions of the field
change δh and anisotropy change δγ to the average work done
(10). That is, in the examples that we have studied there is
no sharp change in T ∗ as a function of the quench parameters
when either of the two terms in Eq. (10) are absent or neglected.

IV. WORK FLUCTUATIONS

When the initial state is the ground state of H0 the work
fluctuation is

�2 = 1

4

N−1∑
n=0

ε1(qn)2 sin2 2�n. (20)

In the thermodynamic limit the fluctuation per spin σ 2 =
limN→∞ �2/N can be represented as a contour integral over a

positively oriented unit circleC via the transformation eik → z:

σ 2 =
∫ 2π

0

[γ1(h0 − cos k) − γ0(h1 − cos k)]2

ε2
0 (k)

sin2k dk

8π
,

= 1

2πi

∮
C
f (z) dz, (N → ∞), (21)

with integrand

f (z) = 1

16

(z2 − 1)2 ∏
±(z − z±)2

z3
∏

i(z − zi)
. (22)

The zeros z± of the numerator are

z± = γ0h1 − γ1h0 ±
√

(γ0h1 − γ1h0)2 − (γ0 − γ1)2

γ0 − γ1
, (23)

while the (generally) nonzero poles zi are

z1 =
h0 +

√
γ 2

0 + h2
0 − 1

γ0 + 1
, (24)

z2 =
h0 −

√
γ 2

0 + h2
0 − 1

γ0 + 1
, (25)

z3 =
−h0 +

√
γ 2

0 + h2
0 − 1

γ0 − 1
, (26)

z4 =
−h0 −

√
γ 2

0 + h2
0 − 1

γ0 − 1
. (27)

It turns out that the contour integral (21) simplifies to the
sum of at most three residues of f for noncritical H0:

σ 2 =
∑
|zi |<1

Res
z=zi

f (z). (28)

This exact analytic result is one of the main contributions of
this paper. It allows us to make a general statement about the
location of nonanalyticities of the work fluctuation σ 2 on the
(h0,γ0) plane: The work fluctuation is generally not analytic at
the points (h0,γ0) where H0 is critical. An in-depth analysis of
the pole structure of the integrand f (z) proves this claim. As
summarized in Table I, a pole moves from inside the contour

TABLE I. Pole structure of the integrand f (z) for the work
fluctuation per spin σ 2 in a ground state quench (21). The prequench
parameters h0 and γ0 of H0 are finite and the postquench Hamiltonian
H1 is not critical.

Phase of H0 Poles inside C Poles on C

FX, |h0| < 1, γ0 > 0 0, z1, z2 None
FY, |h0| < 1, γ0 < 0 0, z3, z4 None
P+, h0 > 1 0, z2, z3 None
P−, h0 < −1 0, z1, z4 None
Critical γ0 = 0 line, |h0| < 1 0 z2 = z3, z1 = z4

Critical field h0 = 1, γ0 > 0 0, z2 z1 = z3

Critical field h0 = 1, γ0 < 0 0, z3 z2 = z4

Critical field h0 = −1, γ0 > 0 0, z1 z2 = z4

Critical field h0 = −1, γ0 < 0 0, z4 z1 = z3

Multicritical points 0 z1 = z2 = z3 = z4
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FIG. 5. (Color online) The work fluctuation per spin σ 2 for
ground state anisotropy quenches at different fixed transverse field
(h = 0, 1

2 ,1, 3
2 ) is not analytic when the prequench anisotropy is

γ0 = 0 and |h| < 1. This behavior reflects quantum criticality in the
gapless XX region of the XY phase diagram.

C to outside it and another moves from outside the contour to
inside it as H0 is changed across a critical point. Since the poles
zi are distinct away from the phase boundaries, the function
σ 2(h0,γ0) has different functional forms within each phase of
H0. The work fluctuation itself is continuous on the critical
lines of H0 (the poles that swap locations become equal at
the critical points), but it is not infinitely differentiable along
these critical lines. That quantum criticality occurs when the
poles zi fall on the unit circle is reminiscent of the Lee-Yang
mechanism of phase transitions in the classical Ising model
[63], and the analogies between these two phenomena are
currently being investigated.

We also make the additional observation that field quenches
restricted to the XX line γ0 = γ1 = 0 have no work fluctuation
(21). In the isotropic XX regime the transverse field merely
acts as a chemical potential for the fermionic quasiparticle
excitations of the model. Thus, energy eigenstates of an
XX Hamiltonian with field h0 are also eigenstates of any
postquench XX Hamiltonian with a different field h1. The
resulting probability distribution for the work done is therefore
delta peaked at W = �E = − 1

2N (h1 − h0) with no work
fluctuation for any magnitude of field quench.

A. Anisotropy quenches

With an exact formula for the work fluctuation at hand, we
can consider specific examples where the presence of nonan-
alyticities reveal the criticality of the prequench Hamiltonian
H0. For instance, we take the case of anisotropy quenches
γ0 → γ1 at different fixed fields h0 = h1 = h. As shown in
Fig. 5 the work fluctuation has a kink (finite discontinuity in the
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FIG. 6. (Color online) Work fluctuation per spin in the thermo-
dynamic limit σ 2 = limN→∞ �2/N for ground state quenches that
end at (a) the zero-field Ising model, and (b) the multicritical point
at h1 = 1. The work fluctuation is not analytic along the critical field
lines |h0| = 1 and the critical XX line γ0 = 0,|h0| < 1.

first derivative with respect to γ0) at the isotropic line γ0 = 0
only for field magnitudes below the critical threshold |h0| < 1.
An explicit calculation for the case of quenches toward the
Ising line (γ1 = 1) gives

∂σ 2

∂γ0

∣∣∣∣
γ0→0+

− ∂σ 2

∂γ0

∣∣∣∣
γ0→0−

=
{

(h2 − 1)/2, |h| < 1,

0, |h| > 1,
(29)

and we find that the kink only appears along the critical XX
line.

B. Ground state quench along the Ising line

Another example in which our solution yields concrete
results is given by a ground state quench of the transverse field
Ising model. The work fluctuation per spin has a discontinuous
field derivative at prequench critical fields h0 = ±1 (except
when h1 = ±1) [64]:

σ 2 =
{

(h1 − h0)2/8, |h0| < 1,

(h1 − h0)2/(8|h0|), |h0| � 1.
(30)

In the exceptional case h1 = ±1 the nonanalyticity at criti-
cality is more subtle. A series expansion of σ 2 about h0 =
±1 = h1 reveals that it is the third derivative ∂3(σ 2)/∂h3

0 that
first becomes discontinuous at h0 = ±1. The exact result (30)
includes the previously calculated approximate asymptotic
formula obtained for h1 	 1 [15].

C. Quench with fixed postquench parameters

The nonanalytic behavior of the work fluctuation when
the prequench Hamiltonian is critical is further illustrated in
examples where the postquench parameters (h1,γ1) are fixed.
In Fig. 6(a) we show our calculations for σ 2 in the case of
a ground state quench toward the zero-field transverse Ising
model, which clearly shows kinks in the work fluctuation
along the critical field and critical isotropic regions. The
exact analytic solution used to obtain this plot is given in
Appendix A.

We now discuss in some detail a more involved example in
which the postquench Hamiltonian H1 lies on the multicritical
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point (h1,γ1) = (1,0), so that both H0 and H1 are quantum
critical. The work fluctuation in this case is graphed in
Fig. 6(b), which reveals kinks along the prequench critical
field h0 = −1. The difference in the field derivatives of the
work fluctuation per spin along this critical line is

∂σ 2

∂h0

∣∣∣∣
h0→−1+

− ∂σ 2

∂h0

∣∣∣∣
h0→−1−

= − 1

|γ0| . (31)

The first derivative of the work fluctuation with respect to
anisotropy is also discontinuous across the critical XX line:

∂σ 2

∂γ0

∣∣∣∣
γ0→0+

− ∂σ 2

∂γ0

∣∣∣∣
γ0→0−

=
{

(1 − h0)2/2, |h0| � 1,

0, |h0| > 1,
.

(32)
However, the nonanalytic behavior of σ 2 at h0 = 1 is more

subtle. Inspection of Fig. 6(b) does not immediately reveal
singular derivatives at h0 = 1. In Appendix B we prove that
the first discontinuous derivative of σ 2 with respect to the
field at h0 = 1 is, in fact, the fifth. That nonanalyticities in
σ 2 are weakened when h0 = h1 fall on the same critical
region can be traced back to the contour integral formula
(21) and Table I. We find that the pole that contributes to the
nonanalytic behavior at the critical field h0 is canceled by one
of the terms (z − z±)2 in the numerator of the integrand f (z)
when h1 = h0.

FIG. 7. (Color online) For quenches along the Ising line γ0 =
γ1 = 1 toward zero-field h1 = 0, an initial nonzero temperature
smooths the kink of the work fluctuation per spin at the critical
prequench field h0 = 1 (top). However, the numerically calculated
second derivative of σ 2 at nonzero temperature suggests the existence
of a cusp singularity at h0 = ±1 (bottom).

D. Nonzero temperature

Extending these results to initially mixed states at finite β

yields

σ 2 =
∫ 2π

0

(
(h0 − h1)2 + (γ0 − γ1)2 sin2 k

2 cosh[βε0(k)/2]

+
{

[γ1h0 − γ0h1 + (γ0 − γ1) cos k]2 sin2 k

ε2
0 (k)

× tanh[βε0(k)/2]

})
dk

8π
. (33)

We see that singular behavior that can potentially arise from
the criticality of H0 must come from the second term enclosed
in large parentheses, which has ε2

0 in the denominator. Near
criticality, the temperature-dependent factor tanh(βε0/2) only
partially cancels the divergence caused by vanishing ε2

0 . We
have performed some numerical calculations of this term
and found that σ 2 is generally smooth (with continuous
first derivatives) at critical H0. However, as in the cases of
weakened nonanalyticities above, we have found numerical
evidence that higher derivatives of σ 2 are singular at the
critical points even at nonzero temperatures. In Fig. 7 we
present the case of a nonzero temperature quench along
the Ising line with postquench field h1 = 0. The fluctuation
per spin is seen to be continuous at h0 = 1, while its
second derivative with respect to h0 diverges. This result
is noteworthy as the singular behavior of observables at
quantum critical points tend to be washed out by thermal
fluctuations.

V. CONCLUDING REMARKS

In this paper, we have studied the statistics of the work
done in quantum quenches of the one-dimensional XY model.
We obtained the characteristic function of the probability
distribution of work for a generic quench from initial values
h0 and γ0 to final values h1 and γ1 of the magnetic field and
anisotropy, respectively. The average work done during the
quench was calculated from this characteristic function, and
sharp peaks in irreversible entropy production were observed
in the vicinity of the quantum critical lines. In small magnitude
field quenches, irreversible entropy production was shown
to be enhanced (reduced) by increased anisotropy in the
paramagnetic (ferromagnetic) phase. We also derived an exact
contour integral formula for the work fluctuation per spin
in ground state quenches and showed how nonanalyticities
can arise at points where the prequench XY Hamiltonian is
critical. Finally, we obtained exact and compact solutions
for the work statistics in the case of ground state quenches
along the the transverse field Ising line. This latter result
allowed us to identify logarithmic singularities and finite
discontinuities in the field derivatives of the average work
and work fluctuation, respectively, at the quantum critical
prequench fields.

Note added in proof. Recently a related paper was published
reporting similar numerical results for finite-length quenched
XY chains in the presence of three-site interactions [65].
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APPENDIX A: QUENCH TO ZERO-FIELD ISING MODEL

When the postquench parameters are (h1,γ1) = (0,1), which correspond to the zero-field transverse field Ising model, the
residue formula (28) gives

σ 2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1 − γ0)2

8(1 + γ0)2
+ γ0h

2
0

(1 + γ0)3
, FX,

1/8, FY,

1 + γ0
(
1 + 4h2

0

) + γ 2
0 + γ 3

0

8(1 + γ0)3
± 2γ0h0

[
2
(
1 − h2

0

) + γ0 − γ 2
0

]
8(1 + γ0)3

√
γ 2

0 + h2
0 − 1

, P±.

(A1)

In the paramagnetic region σ 2 has a Taylor series expansion about γ0 = −1 and is therefore infinitely differentiable with respect
to γ0, that is, γ0 = −1 is a removable singular point.

APPENDIX B: QUENCH TO MULTICRITICAL POINT

Let us consider ground state quenches toward the multicritical point (h1,γ1) = (1,0). We use the residue formula (28) and
expand the work fluctuation about the critical field h0 = 1 in the ferromagnetic and P+ paramagnetic phases of H0:

σ 2 = γ 2
0

8(1 + |γ0|)3

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + 3|γ0| − 4(h0 − 1) + 2(h0 − 1)2

|γ0| , FX and FY,

1 + 3|γ0| − 4(h0 − 1) + 2(h0 − 1)2

|γ0| − (1 + |γ0|)3(h0 − 1)5

2|γ0|7
+ · · · , P + .

(B1)

We conclude that the work fluctuation and its first four derivatives with respect to h0 are continuous at the critical field h0 = 1.
Furthermore, at this critical field the fifth derivative has the discontinuity

∂5(σ 2)

∂h5
0

∣∣∣∣
h0=1+

− ∂5(σ 2)

∂h5
0

∣∣∣∣
h0=1−

= − 15

2|γ0|5
. (B2)
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