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A quantum phase transition from the miscible to the immiscible phase of a quasi-one-dimensional binary
Bose-Einstein condensate is driven by ramping down the coupling amplitude of its two hyperfine states. It results
in a random pattern of spatial domains where the symmetry is broken separated by defects. In distinction to
previous studies [J. Sabbatini et al., Phys. Rev. Lett. 107, 230402 (2011), New J. Phys. 14, 095030 (2012)],
we include nonzero detuning between the light field and the energy difference of the states, which provides a
bias towards one of the states. Using the truncated Wigner method, we test the biased version of the quantum
Kibble-Zurek mechanism [M. Rams et al., Phys. Rev. Lett. 123, 130603 (2019)] and observe a crossover to the
adiabatic regime when the quench is sufficiently fast to dominate the effect of the bias. We verify a universal
power law for the population imbalance in the nonadiabatic regime both at the critical point and by the end
of the ramp. Shrinking and annihilation of domains of the unfavorable phase after the ramp, that is, already in
the broken symmetry phase, enlarges the defect-free sections by the end of the ramp. The consequences of this
phase-ordering effect can be captured by a phenomenological power law.
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I. INTRODUCTION

Quantum phase transitions involve a dramatic change in the
ground state of the system as a consequence of small changes
to its Hamiltonian. They can be induced by adjusting an exter-
nal parameter such as magnetic field. They need not happen at
absolute zero temperature: it is sufficient that the temperature
is sufficiently low for the measurable equilibrium properties
of the system (e.g., correlations) to be dominated by the
properties of the ground state. The miscibility-immiscibility
transition in the Bose-Einstein condensate (BEC) is a good
illustration of a quantum phase transition.

For illustration, atoms of the condensate (such as 87Rb)
may start in a superposition of two hyperfine states. In the
presence of the magnetic field, these states are miscible, so
these atoms persist in superposition. However, as the field
is lowered, hyperfine states of 87Rb become immiscible, in-
ducing symmetry breaking: different BEC fragments attempt
to choose one or the other of these two hyperfine states (see
Fig. 1 for an example of such a transition). By controlling an
external parameter, one can drive BEC atoms through such a
miscibility-immiscibility transition at various rates.

The miscibility-immiscibility transition is in some ways
reminiscent of the paramagnetic-ferromagnetic transition in
the quantum Ising chains in a transverse field in that
the system is forced to choose between the two possible
alternatives—spins up or down in the ferromagnetic phase of
the Ising model and one or the other of the two hyperfine states
in the immiscible phase of the BEC. We, therefore, expect
that the Kibble-Zurek mechanism (KZM) that has been by
now well established in the other phase transitions can also
be studied in the miscibility-immiscibility transitions in the
Bose-Einstein condensates [1,2].

KZM originated from a scenario for topological defect for-
mation in cosmological phase transitions driven by expanding
universe [3] where independent selection of broken symmetry
vacua in causally disconnected regions can be expected to
result in a mosaic of broken symmetry domains leading to
topologically nontrivial configurations. However, for phase
transitions in condensed matter systems, relativistic causality
is not relevant. Thus, to relate the density of defects to the

FIG. 1. Miscible-immiscible transition. A condensate of atoms
in an equal superposition of two hyperfine states is driven across
a miscible-immiscible transition and separates into domains with
different states. A typical size of the domains is proportional to the
third root of the transition time [1,2]. In this paper, we apply a bias
favoring one of the states and study how it affects the outcome of the
transition.
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quench rate and the nature of the transition, a dynamical the-
ory for the continuous phase transitions was proposed [4,5].
It predicts the scaling of the defect density as a function of
the quench rate by employing the universality class of the
transitions—its equilibrium critical exponents. It has been
verified by numerous simulations [6–17] and experiments
[18–43]. Topological defects play central role in these studies
as they can survive inevitable dissipation and can be counted
afterwards.

The quantum version of KZM (QKZM) was developed for
quenches across critical points in isolated quantum systems
[44–83]. It was already tested by experiments [25,84–96].
Recent progress in Rydberg atoms’ versatile emulation of
quantum many-body systems [95–98] and coherent D-Wave
[94,99] open the possibility to study the QKZM in a variety
of two- and three-dimensional settings and/or to employ it as
a test of quantumness of the hardware [80–83,94].

The QKZM can be briefly outlined as follows. A smooth
ramp crossing the critical point at time t = 0 can be linearized
in its vicinity as

ε(t ) = t

τQ
. (1)

Here, ε is a dimensionless parameter in a Hamiltonian that
measures distance from the quantum critical point, and τQ is
called a quench time. Initially, the system is prepared in its
ground state far from the critical point. At first, far from the
critical point, the evolution adiabatically follows the ground
state of the changing Hamiltonian. However, adiabaticity fails
near the time −t̂ when the energy gap becomes comparable to
the quench ramp rate:

� ∝ |ε|zν ∝ |ε̇/ε| = 1/|t | (2)

and the critical slowing down precludes such adiabatic follow-
ing.

This timescale is

t̂ ∝ τ
zν/(1+zν)
Q , (3)

where z and ν are the dynamical and the correlation length
critical exponents, respectively. The correlation length at −t̂ ,

ξ̂ ∝ τ
ν/(1+zν)
Q , (4)

defines the size of the domains where fluctuations select the
same broken symmetry ground state. Its inverse determines
the resulting density of defects left after crossing the critical
point,

Nd ∝ ξ̂−1. (5)

The two KZ scales are related by

t̂ ∝ ξ̂ z. (6)

Accordingly, in the KZM regime after −t̂ , observables are
expected to satisfy the KZM dynamical scaling hypothesis
[100–102] with ξ̂ being the unique scale. For, say, a two-point
observable Or , where r is a distance between the two points,
it reads

ξ̂�O 〈ψ (t )|Or |ψ (t )〉 = FO(t/ξ̂ z, r/ξ̂ ), (7)

where |ψ (t )〉 is the state during the quench, �O is the scaling
dimension, and FO is a nonuniversal scaling function.

II. QUENCH WITH A BIAS

The selection of the broken symmetry can be biased and,
simultaneously, the quantum transition can be made more
adiabatic, by adding a bias term to the Hamiltonian that is
linear in the order parameter with a bias strength b [71].
A similar mechanism was demonstrated experimentally for
a classical thermodynamic transition in helium-3 [43]. In a
quantum transition, the bias opens a finite energy gap at the
critical point,

�b ∝ bzν/(βδ), (8)

and makes the correlation length finite:

ξb ∝ �
−1/z
b ∝ b−ν/(βδ). (9)

Here β is the order parameter exponent in the ordered phase
(M ∝ εβ , where M is the order parameter) and δ is its ex-
ponent at the critical point (M ∝ b1/δ). With ξb providing an
additional length scale, the scaling hypothesis (7) generalizes
to

ξ̂�O 〈ψ (t )|Or |ψ (t )〉 = FO(t/ξ̂ z, ξ̂/ξb, r/ξ̂ ). (10)

The extra argument, ξ̂ /ξb, discriminates between the nonadi-
abatic and adiabatic regimes. When ξ̂ � ξb, the energy gap
(8) is strong enough to make the quench adiabatic all the way
through the critical point. When ξ̂ � ξb, then in first approx-
imation, the bias can be ignored and the QKZM proceeds as
usual. The freezeout takes place far enough from the critical
point for the weak bias to have a negligible effect. Beyond
this first approximation, one can expect that, before −t̂ , when
the evolution is adiabatic, the order parameter in the ground
state is proportional to |ε|−γ b. Here |ε|−γ is proportional to
the linear susceptibility and γ is the susceptibility exponent.
At −t̂ , it freezes out with a value proportional to

M̂ ∝ b τ
γ /(1+zν)
Q . (11)

This is the order parameter when the system is crossing the
critical point. It remains a nonuniversal system-specific ques-
tion of whether this characteristic power law survives after the
quench deep in the symmetry-broken phase.

III. SYSTEM

In this paper, we consider the effect of the bias on the
miscibility-immiscibility transition in the same system as in
Refs. [1,2]. The Hamiltonian for the binary BEC mixture in
one dimension reads [103,104]

Ĥ = Ĥsp + Ĥint + Ĥcpl. (12)

Here Ĥsp, Ĥint , and Ĥcpl are the single-particle, interaction, and
coupling Hamiltonians, respectively, defined as

Ĥsp =
∫

dx
2∑

i=1

ψ̂
†
i (x)

[
− h̄2

2m

∂2

∂x2
− μ + V (x)

]
ψ̂i(x),

(13)
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Ĥint =
∫

dx

{
2∑

i=1

gii

2
ψ̂

†
i (x)ψ̂†

i (x)ψ̂i(x)ψ̂i(x)

+ g12ψ̂
†
1 (x)ψ̂†

2 (x)ψ̂2(x)ψ̂1(x)

}
, (14)

Ĥcpl =
∫

dx

{
h̄b

2
[ψ̂†

2 (x)ψ̂2(x) − ψ̂
†
1 (x)ψ̂1(x)]

− h̄�(t )[ψ̂†
1 (x)ψ̂2(x) + ψ̂

†
2 (x)ψ̂1(x)]

}
. (15)

Here ψ̂i(x) is the Bose field operator that annihilates a particle
in hyperfine state i at position x. It obeys [ψ̂i(x), ψ†

j (x′)] =
δi jδ(x − x′). gi j are one-dimensional (1D) interaction con-
stants obtained by integration from a 3D Hamiltonian where
the transverse state is tightly confined in the transverse ground
state by a transverse harmonic potential with frequency ω⊥:
gi j = 2h̄2ai j/(ma2

⊥), where ai j is the 3D s-wave scattering
length and a⊥ = √

h̄/mω⊥ is the transverse harmonic oscilla-
tor length. In the coupling Hamiltonian, �(t ) is the coupling
strength and b is the detuning of the light field from the energy
difference of the states. The detuning is the bias that favors one
of the two components over the other.

In the absence of the bias, b = 0, the ground state of the
model undergoes a continuous phase transition between the
miscible phase, when � > �c, and the immiscible one, when
� < �c. At the mean-field level, in the former phase, each
particle is in a symmetric superposition of the two hyperfine
states and in the latter, there are two symmetry-broken ground
states where the superposition is tilted in favor of one of the
two hyperfine states. In the following we assume g11≈g12 ≡ g
when the critical

h̄�c = 1

2
(g12 − g)ρ (16)

with ρ being total particle density [1,2]. The linear ramp (1)
is implemented as

�(t ) = �c[1 − ε(t )] (17)

starting in the ground state at 2�c and stopping after � is
brought down to zero.

The rest of the paper is organized as follows. In Sec. IV,
we study model (12) in order to extract all relevant mean-field
critical exponents for the miscible-immiscible quantum phase
transition. In Sec. V, we briefly outline the truncated Wigner
approximation [105–108] and anticipate potential problems
with the ultraviolet divergence of quantum fluctuations rep-
resented by classical ones. The biased QKZM is considered
in Secs. VI and VII. In Sec. VI, we focus on the order pa-
rameter scaling both when the ramp is crossing the critical
point and when it is terminated deep in the immiscible phase.
In Sec. VII, the kinks/defects are counted as a function of
the bias driving the QKZM towards a defect-free regime. In
Sec. VIII, possible experimental realizations of the model are
discussed. Finally, we conclude in Sec. IX.

IV. MODEL PROPERTIES

In the framework of the truncated Wigner approximation
(TWA) [105–108], the operators in the Hamiltonian (12) are
replaced by classical fields ψi. In a homogeneous system,
V (x) = 0, the uniform ground state can be parameterized as

ψ
(0)
1 = √

ρ cos

(
1

4
π − α

)
,

ψ
(0)
2 = √

ρ sin

(
1

4
π − α

)
. (18)

Here ρ is the total density of particles and α plays a similar
role as the order parameter for the miscible-immiscible tran-
sition that can be defined as a population imbalance:

M = ρ1 − ρ2

ρ1 + ρ2
. (19)

Here ρi = |ψi|2. In the ground state (18) we have M = sin 2α.
The ground state minimizes the energy density

ε(ρ, α) = −μρ − 1

2
h̄bρ sin 2α − h̄�ρ cos 2α

+ 1

2
gρ2 + 1

4
(g12 − g)ρ2 cos2 2α. (20)

Here we assumed g11 = g22 ≡ g, which is a good approxima-
tion [1,2]. A minimization with respect to ρ yields a compact
formula for the chemical potential,

μ = 1

2
ρ(g12 + g) − h̄�

cos 2α
, (21)

and with respect to α an equation for b:

b = 2

[
�

cos 2α
− �c

]
sin 2α. (22)

Here �c is the critical value of � in (16).
The Ginzburg expansion of the energy (20) near �c in

powers of α yields

ε = ε0 + h̄ρ[b · α + 2(� − �c) · α2 + �c · α4]. (23)

For zero bias, b = 0, the symmetric α = 0 is a solution for any
�, but it is unstable in the immiscible phase below �c. Above
�c, when the quartic term is neglected for small enough b,
there is an approximate solution

α ≈ b

4(� − �c)
, (24)

that diverges at the transition with the susceptibility exponent
γ = 1. The quartic term prevents this divergence and allows
the order parameter at � = �c to remain finite:

αc =
(

b

4�c

)1/3

(25)

with the critical exponent δ = 3.
The expansion (23) also provides an insight into small

Bogoliubov fluctuations around the uniform ground-state so-
lution. For b = 0 and when the critical point is approached
from above, the quadratic term in (23) makes the frequency of
small oscillations with wave vector k = 0 around the ground
state, α = 0, decrease as (� − �c)1/2. This power law implies
that the critical exponents satisfy zν = 1/2. For a nonzero bias
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and at � = �c, small harmonic oscillations around (25) have
a frequency ∝ (b/�c)1/3. The exponent 1/3, that stands for
zν/β/δ, implies β = 1/2. Finally, a linear dispersion, ω ∝ k,
at the critical point implies z = 1 and, consequently, ν = 1/2.
This way, we obtained all critical exponents that are relevant
for the biased KZM. They are the mean-field exponents for
the Ising universality class. For a quick reference, we also list
here the exact exponents that should be valid asymptotically
very close to the critical point: z = 1, ν = 1, γ = 7/4, δ = 15,
and β = 1/8. In principle, they could be probed by QKZM in
the limit of very slow quenches.

V. TRUNCATED WIGNER APPROXIMATION

In the truncated Wigner approximation [105–108] the two
fields, ψi(t, x), evolve according to the classical coupled
Gross-Pitaevski equations (GPE)

ih̄
∂ψi

∂t
=

[
− h̄2

2m

∂2

∂x2
− μ + V (x)

]
ψi

+ (−1)i h̄b

2
ψi − h̄�(t ) ψ3−i

+ [gii|ψi|2 + g12|ψ3−i|2]ψi. (26)

The simulation starts from the ground state above the critical
point at � = 2�c and follows the ramp (17) down to � = 0
where the ramp stops.

The initial ground state is dressed with random fluctuations
as

ψi(x, tin ) = ψ
(0)
i +

∑
n

[ηnui,n(x) + η∗
nv

∗
i,n(x)]. (27)

Here, index n numbers stationary Bogoliubov modes around
the initial state and ηn are complex Gaussian noises with
correlations η∗

nηm = δnm/2. In the TWA framework, they rep-
resent quantum fluctuations in the initial ground state. Each
random initial state is evolved with the GPE (26). Expectation
values of observables are estimated by averaging over the
random initial noises. Hereafter, the error bars of the estimates
account for the standard error of the mean and indicate a 95%
confidence interval.

The representability of the quantum fluctuations by the
classical ones in the TWA has inevitable limitations. For in-
stance, the average density in (27) is

ρi = ∣∣ψ (0)
i

∣∣2 +
∑

n

1

2
(|ui,n(x)|2 + |vi,n(x)|2) (28)

while the correct formula for a Bogoliubov vacuum reads

ρi = ∣∣ψ (0)
i

∣∣2 +
∑

n

|vi,n(x)|2. (29)

As in our periodic boundary conditions, the Bogoliubov
modes are momentum eigenstates,

ui,n(x) = Ui,neiknx, vi,n(x) = Vi,neiknx, (30)

for every n we have |ui,n(x)|2 ∝ |vi,n(x)|2. The discrepancy
between (28) and (29) is negligible for low-frequency modes,
with a wavelength much longer than the healing length, where
|Ui,n| ≈ |Vi,n|. However, for high-frequency modes, where
|Ui,n| ≈ 1 and |Vi,n| � 1, there is a dramatic difference. As

their coefficients |Vi,n| become negligible with increasing fre-
quency, they also have a negligible contribution to the exact
formula (29) but at the same time, as their |Ui,n| become
close to 1, there is an ultraviolet (UV) divergence in the TWA
approximation (28).

At first sight, the error could be mitigated just by truncating
the high-frequency modes from the expansion (27). The ques-
tion of where exactly to truncate is complicated by the fact
that the healing length, and thus the cutoff, depends on �. It is
small at the initial 2�c and large near the critical point, where
it grows up to ξb ∝ (b/�c)−1/3. In the adiabatic regime, where
ξb � ξ̂ , all wavelengths evolve adiabatically and it is ξb that
sets the cutoff scale at the critical point. In the complementary
nonadiabatic regime, where ξ̂ � ξb, wavelengths shorter than
ξ̂ evolve adiabatically and, as they are also much shorter than
ξb, they need to be truncated at the critical point. Wavelengths
much longer than ξ̂ freezeout near −t̂ , where ξ̂ is the healing
length, and thus they do not require the truncation anywhere
between −t̂ and the critical point. Therefore, it is ξ̂ that sets
the UV cutoff in the nonadiabatic regime. In the following,
we avoid the truncation while bearing in mind the above
discussion.

For our simulations, we choose to simulate 87Rb atoms
in a ring trap of circumference L = 96 µm with transverse
trapping frequency ω⊥ = 2π × 500 Hz and total number of
particles Ntot = N1 + N2 = 2 × 104. We take the 3D s-wave
scattering lengths to be a11 = a22 = a12/2 = 1.325 nm (from
which the interaction strengths gi j can be calculated via gi j =
2h̄ω⊥ai j , in the absence of confinement induced resonances
[109]). With these parameters, all energy scales are smaller
than the energy of the first excited state of the transverse har-
monic trap, e.g., μ0 ≈ 9.15 × 10−32J < h̄ω⊥, and our system
is well within the one-dimensional regime [110]. Here, μ0 is
the chemical potential of the two components μ1 = μ2 = μ0,
when both have the same number of particles and b = 0.
Once we introduce a nonzero bias b, the chemical poten-
tials of the two components are given by μ1 = μ0 + h̄b/2
and μ2 = μ0 − h̄b/2. The average of the chemical potentials
μ = (μ1 + μ2)/2 = μ0 is still a constant. Furthermore, the
large ratio between the total number of particles N and the
number of simulated Bogoliubov modes MB = 1024 ensures
the validity of the TWA [105]. All numerical simulations
reported hereafter were performed with the software package
XMDS2 [111].

The parameters presented in the preceding paragraph
correspond to the regime where the two components are
strongly immiscible with � ≡ g11g22/g2

12 = 0.25. These pa-
rameters are chosen such that the system spin healing
length ξs ≡ h̄/

√
2mρgs, with gs = (2g12 − g11 − g22)/2, is

relatively short, and leads to both a large number of domains
and their straightforward identification.

VI. ORDER PARAMETER SCALING

According to (25), in the ground state at the critical point,
the order parameter’s response to a weak bias is proportional
to (b/�c)1/δ . Assuming that this parameter sets a scale for
magnetization M, we can formulate a dynamical scaling hy-
pothesis for the order parameter during the quench between
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±t̂ as [71]

(b/�c)−1/δM(t ) = FM
[
(t − tc)/ξ̂ z, bτβδ/(1+zν)

Q

]
. (31)

Here FM is a nonuniversal scaling function. Its first argument
is the scaled time measured with respect to time tc when
the critical point is crossed by the ramp. The second one
is proportional to ξ̂ /ξb in (10). In particular the hypothesis
can be probed at the critical point, t = tc, when it predicts
that plots for different b of (b/�c)−1/δM(tc) as a function of
x = bτβδ/(1+zν)

Q collapse to a common scaling function:

(b/�c)−1/δM(tc) = fM
(
bτβδ/(1+zν)

Q

)
. (32)

Here fM (x) ≡ FM[0, x].
This function saturates at a constant value in the adia-

batic regime, x � 1, where M(tc) becomes equal to the order
parameter in the ground state at the critical point, which is
∝ (b/�c)1/δ . With δ = 3 the mean-field equation (25) implies

fM (x � 1) ≈ 21/3. (33)

In the complementary nonadiabatic regime, x � 1, the or-
der parameter is expected to freeze out at −t̂ , where it is
proportional to bε̂−γ ∝ bξ̂ γ /ν ∝ bτ γ /(1+zν)

Q , and survive to the

critical point as M(tc) ∝ bτ γ /(1+zν)
Q . Using the scaling relation

γ = β(δ − 1), we can predict [71]

fM (x � 1) ∝ (bτQ)γ β−1δ−1 = (bτQ)2/3 ≡ x2/3. (34)

In the last equality, we assumed the mean-field exponents.
The collapse predicted in (32) and the asymptotes of the

scaling function in (33) and (34) are tested in Fig. 2. In its
top panel, initial fluctuations ηn in (27) were set to zero in
order to prevent the unphysical UV divergence in (28) from
obscuring the physical results. With the bias, the system at the
critical point remains stable against small fluctuations that add
just a small quantum correction in (29). The top panel demon-
strates a perfect collapse interpolating between the predicted
asymptotes.

The initial fluctuations in (27) were included in the bottom
panel of Fig. 2 showing magnetization averaged over random
ηn. The UV-divergent fluctuations make plots depart from the
collapsed plots in the top panel. The departure originates from
the high-frequency Bogoliubov modes whose adiabaticity de-
pends only on τQ while their mode eigenfunctions show a
linear response to the bias. Accordingly, for each bias, the
departure begins at τQ that is independent of the bias and
at a value of the order parameter that is proportional to b.
Whereas at �c, the exact quantum fluctuations can be just ne-
glected, in the following evolution below �c, long wavelength
Bogoliubov modes trigger inhomogeneities that survive in
the symmetry broken phase. The effect of the high-frequency
fluctuations on the inhomogeneous pattern is averaged to zero
on the time scale t̂ that it takes the inhomogeneities to develop.
In this respect, the high-frequency modes do not need to be
truncated by hand.

The average order parameter is one of the characteristics
that can probe the final state in the immiscible phase at the
end of the ramp. Figure 3(a) shows that final M collapses in
the nonadiabatic regime for small bτQ. The collapse cannot
extend to the complementary adiabatic regime, that is, for
large bτQ, because the order parameter saturates there at 1
instead of remaining proportional to (b/�c)1/3. At the end of

10-2 10-1 100 101

10-1

100

10-2 10-1 100 101

10-1

100

FIG. 2. Critical order parameter scaling. The order parameter
when the ramp is crossing the critical point, at � = �c, as a function
of scaled quench time for different biases. In (a) fluctuations ηn in
(27) were set to zero resulting in a perfect collapse in accordance
with the scaling hypothesis in (32) and (34). We can also see the adi-
abatic saturation for bτQ � 1. In (b) the same but with the classical
fluctuations in (27) and their unphysical UV divergence.

the ramp, all particles end in the favorable component 1. This
does not preclude a collapse for a suitably modified scaling
hypothesis.

One may notice that, in Fig. 3(a), the asymptote ∝ (bτQ)2/3

(valid for small bτQ) crosses the saturation level ∝ b−1/3

achieved for large bτQ at τQ ∝ b−3/2. Therefore, a simultane-
ous collapse in both regimes can be engineered by plotting
unscaled order parameter M as a function of b3/2τQ, see
Fig. 3(b). In the final state it is τQ ∝ b−3/2, in place of τQ ∝
b−1, that marks the actual crossover to the defect-free regime.
In the next section, we will see the same crossover for the
density of defects in the final state.

The final scaling is predicted by crossing the two asymp-
totes. The saturation level of the order parameter at M = 1
for large enough τQ must be trivially true. The asymptote
∝ (bτQ)2/3 for fast quenches is predicted by KZM within ±t̂
but it does not need to survive until the end of the ramp at
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10-2 10-1 100 101

100

10-3 10-2 10-1 100

10-1

100

FIG. 3. Final order parameter scaling. In (a) scaled order param-
eter at the end of the ramp, � = 0, as a function of scaled quench
time bτQ for different biases. For small bτQ the plots collapse in
accordance with the scaling hypothesis (34). In the adiabatic regime,
for large bτQ, the order parameter saturates at 1 for all biases. In
(b) the same data as in (a) but presented as the order parameter as
a function of b3/2τQ. This scaling makes the plots collapse for both
small and large b3/2τQ.

� = 0. However, in first approximation, one can argue that a
domain pattern that forms at +t̂ survives until the end of the
ramp and, therefore, the average order parameter determined
by the proportion of the two immiscible phases survives as
well.

VII. DENSITY OF KINKS

The fluctuations in (27) are essential for breaking the trans-
lational invariance and formation of kinks/defects separating
domains of different immiscible phases. In the usual way
[43,71], one can argue that the density of defects, n, should
satisfy a scaling hypothesis:

Nd = ξ̂−1FN
[
(t − tc)/ξ̂ z, bτβδ/(1+zν)

Q

]
. (35)

FIG. 4. Defect density without bias. Average number of defects
as a function of τQ. For intermediate quench times, the slope is −1/3
in consistency with Nd ∝ ξ̂−1 with mean-field exponents. With exact
exponents, the slope −1/2 would be significantly different. For large
τQ, where the number of kinks goes down towards 2, the curve begins
to cross over to an exponential decay as the finite size of the system
makes the transition adiabatic thanks to a finite gap in the spinon
excitation spectrum. For small τQ, kinks are overcounted as they are
often difficult to distinguish from extra zero crossings due to strong
fluctuations.

This scaling hypothesis is expected to hold in the KZ regime
extending up to t̂ where, unfortunately, counting defects is
still obscured by relatively large fluctuations. If we want to
avoid sophisticated filtering of the fluctuations, which would
require extra theorizing and smuggling in some of the KZ
assumptions, the counting has to be postponed until deep
in the immiscible phase where the kinks have large magni-
tudes as compared to the quantum noise but where we can
also anticipate some discrepancies with respect to the scaling
hypothesis.

We begin with zero bias, the case considered before in
Refs. [1,2], when defect density Nd ∝ ξ̂−1 with a propor-
tionality factor, FN [(t − tc)/ξ̂ z, 0], is dependent only on the
scaled time. Numerical results deep in the immiscible phase
are shown in Fig. 4. They demonstrate that Nd ∝ ξ̂−1 ∝ τ

−1/3
Q

is consistent with the data for the mean-field critical exponents
and significantly different from n ∝ τ

−1/2
Q predicted with the

exact ones.
For a weak bias, the scaling function in (35) has two

arguments. The second one, equal to bτQ for the mean-field
exponents, discriminates between the nonadiabatic and the
adiabatic regime for its small and large values, respectively.
Without bias, the kinks are counted deep in the immiscible
phase. Figure 5(a) shows their scaled density as a function of
bτQ for different bias strengths. Their collapse is not perfect,
suggesting that with increasing bias, the final state becomes
defect free for shorter τQ than suggested by the crossover
value bτQ ≈ 1. The bias seems to suppress kinks not only by
making the transition itself more adiabatic but also by favoring
their annihilation between +t̂ and the time of their counting
deep in the immiscible phase.
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FIG. 5. Defect density with bias. In (a) scaled number of defects
as a function of bτβδ/(1+zν )

Q for the mean-field critical exponents. The
defects were counted deep in the immiscible phase. Their annihila-
tion between +t̂ and the counting, which is shown in Figs. 6 and
7, explains why the collapse is not perfect. In (b) the same scaled
defect density but as a function of b3/2τQ, similarly as in Fig. 3, that
is improving the collapse.

Indeed, examples of defect annihilation are shown in
Figs. 6 and 7. In both examples, a minority domain disap-
pears together with its two delimiting kinks. In a similar way
as for the final order parameter, and for the same reason,
the collapse of the final kink density improves when scaled
density ξ̂Nd is plotted as a function of b3/2τQ instead of bτQ,
see Fig. 5(b). The disappearance of small domains of the
unfavourable phase reduces the number of kinks and, at the
same time, brings the average order parameter closer to one.

VIII. EXPERIMENTAL FEASIBILITY

Two-component condensates have been experimentally
realized using different atomic species [112,113], atomic iso-
topes [114], or spin states [115–118]. The results presented in
this paper correspond to a system of two strongly immiscible

FIG. 6. Defect annihilation. The KZM predicts the density of
defects at time +t̂ immediately after the time evolution catches up
with the ramp soon after crossing the critical point. These early
defects can be too difficult to distinguish from quantum fluctuations
to be reliably counted. Therefore, the actual counting is postponed
until deep in the immiscible phase. In the meantime, their number can
be reduced by their mutual annihilation (or, equivalently, shrinking of
the minority domains) as shown in the two panels where two domains
disappear between +t̂ and the end of the ramp.

components with � ≡ g11g22/g2
12 = 0.25. This corresponds

to a spin healing length ξs that is relatively short, allowing
us to identify the domains easily. In particular, the number
of domains is obtained from our simulations by calculating
the number of zero crossings of M = (ρ1 − ρ2)/(ρ1 + ρ2).
In experiments, M can be easily extracted by performing
absorption imaging of the two components. The two hyper-
fine states are separated in energy by about 1000 times the
linewidth of the optical transition used to probe them. Hence,
one can take an absorption image of one component and
immediately image the other with another light of a different
frequency.

Specific to the results presented in this paper is the re-
alization of phase separation with the same pair of atomic
species using Feshbach resonances [116]. No pair of hyperfine
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FIG. 7. Defect annihilation. Same as in Fig. 6 but for a slower
quench, deeper in the adiabatic regime. Here, a single domain shrinks
and disappears between +t̂ and the end of the ramp.

states of 87Rb and 23Na are naturally strongly immiscible,
such as the case considered in this work. However, the
combination of the |F = 1, mF = +1〉 and |F=2, mF= − 1〉
hyperfine states of 87Rb has an interspecies Feshbach
resonance [116,119] that can be tuned such that the two-
component condensate is in the immiscible regime while
keeping g11 ≈ g22. Nickas et al. [117] have realized a bi-
nary quasi-one-dimensional condensate of 87Rb atoms with
the above-mentioned hyperfine states and condition where
� ≈ 0.66. It is also worth mentioning the possibility of using
23Na condensate, such as in a recent experiment of Cominotti
et al. [118] where they were able to realize a two-component
condensate using the combination of the |F = 2, mF = −2〉
and |F = 1, mF = −1〉 hyperfine states of 23Na atoms, which
in the absence of the coherent coupling is immiscible with
� ≈ 0.85. It must be noted, however, that the use of a Fes-
hbach resonance has a known disadvantage of inelastic atom
losses [120], especially near resonance.

An alternative way to experimentally realize the miscible-
immiscible phase transition of our system is via spin-orbit
coupling of neutral atoms. In Ref. [115], the authors have
coupled the two Zeeman sublevels of the |F = 1〉 of 87Rb
and were able to measure the phase separation of the dressed
states across the critical point. The phase transition is achieved
by ramping up the intensity of two slightly detuned lasers
coupling the two hyperfine levels. This method has the advan-
tage of reaching deeper into the immiscible regime without
suffering atom losses, unlike the case for using a Feshbach
resonance. However, as noted in Refs. [1,2], the precise spa-
tial arrangement of the dressed state could not be directly
accessed. Instead, it was inferred from absorption imaging
of the bare components. Consequently, while the increased
separation and stability were advantageous, they necessitated
a more complex detection process for determining the number
of domains.

IX. CONCLUSION

This work unifies two themes in the theory of the quan-
tum Kibble-Zurek mechanism (QKZM). One is the theory of
the miscible-immiscible quantum phase transition in quasi-
1D Bose-Einstein condensates developed in Refs. [1,2]. This
mean-field quantum phase transition can be realized in binary
condensate mixtures. The other is the QKZM with a bias that
was investigated theoretically in Ref. [71] and whose classical
version was experimentally verified in helium-3 [43]. The mo-
tivation for the study in Ref. [71] was to make the dynamics
of the quantum phase transition adiabatic by applying a weak
bias in order to speed up adiabatic quantum state preparation
in a controlled way. Here, we propose to test this effect in a
robust mean-field quantum transition.

We verified the QKZM scalings for the order parameter
when the ramp is crossing the critical point but, as the system
is further ramped into the immiscible phase, some defects are
annihilated making the defect-free regime expand to faster
nonadiabatic transitions. Phenomenological power laws were
proposed to describe approximately the final order parameter
and defect density.

The data used for the figures in this article are openly
available from the GitHub repository at [121].
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