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Abstract. We study the breathing (monopole) oscillations and their damping in a harmonically trapped one-
dimensional (1D) Bose gas in the quasicondensate regime using a finite-temperature classical field approach.
By characterising the oscillations via the dynamics of the density profile’s rms width over long time, we
find that the rms width displays beating of two distinct frequencies. This means that the 1D Bose gas
oscillates not at a single breathing mode frequency, as found in previous studies, but as a superposition of
two distinct breathing modes, one oscillating at frequency close to ≃p

3ω and the other at ≃2ω, where ω is
the trapping frequency. The breathing mode at ∼p

3ω dominates the beating at lower temperatures, deep in
the quasicondensate regime, and can be attributed to the oscillations of the bulk of the density distribution
comprised of particles populating low-energy, highly-occupied states. The breathing mode at ≃2ω, on the
other hand, dominates the beating at higher temperatures, close to the nearly ideal, degenerate Bose gas
regime, and is attributed to the oscillations of the tails of the density distribution comprised of thermal
particles in higher energy states. The two breathing modes have distinct damping rates, with the damping
rate of the bulk component being approximately four times larger than that of the tails component.

Résumé. Nous étudions les oscillations de respiration (monopolaires) et leur amortissement dans un gaz de
bosons unidimensionnel (1D) harmoniquement piégé dans le régime de quasi-condensat en utilisant une
méthode de champ classique à température non nulle. En caractérisant les oscillations par le comportement
de la largeur quadratique moyenne du profil de densité sur des temps longs, nous constatons que celle-ci
présente un battement de deux fréquences distinctes. Ceci signifie que le gaz de bosons 1D n’oscille pas à
la fréquence d’un seul mode de respiration, comme l’ont trouvé les études précédentes, mais sous l’effet de
deux modes de respiration superposés, l’un oscillant à une pulsation proche de ∼p

3ω et l’autre à ∼2ω, où ω
est la pulsation de piégeage. Le mode de respiration à ∼p

3ω domine le battement à basse température, dans
le régime fortement quasi-condensé, et est attribué aux oscillations de la partie centrale de la distribution
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de densité, composée de particules occupant les niveaux de basse énergie fortement peuplés. Le mode de
respiration à ∼ 2ω, en revanche, domine le battement à des températures plus élevées, proches du régime
du gaz de bosons presque parfait, et est attribué aux oscillations des ailes de la distribution de densité,
composées de particules thermiques dans des niveaux de plus haute énergie. Les deux modes de respiration
ont des taux d’amortissement distincts, celui de la composante centrale étant environ quatre fois plus grand
que celui des ailes.

Keywords. Ultracold Atoms, Dynamics of 1D Bose Gases, Classical Field Simulations, Breathing Mode Oscil-
lations, Damping of Collective Oscillations.
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1. Introduction

The study of low-energy excitations and their damping is an indispensable tool for the under-
standing of collective many-body effects in ultracold quantum gases. In particular, the temper-
ature dependence of the frequency of collective oscillations and their damping have been the
subject of scrutiny both experimentally [1–5] and theoretically [6–17] since the first experiments
in dilute gas Bose–Einstein condensates [18–20]. Depending on the temperature of the gas, the
damping of collective oscillations in harmonically trapped 3D systems has been explained either
via collisional relaxation [13, 21], where the two parts of the Bose gas (condensate and thermal
components) exchange energy and particles, or via mean-field effects that can lead to Landau
or Beliaev mechanisms of damping [6, 7, 11, 16, 22]. The lifetime of collective oscillations in such
systems has been predicted and measured to be typically on the order of tens of milliseconds.

In contrast to 3D systems, collective oscillations in one-dimensional (1D) Bose gases damp
out on a significantly longer time scales. For example, the lifetime of breathing mode oscillations
observed in Ref. [23] in a weakly interacting 1D quasicondensate was on the order of seconds;
in the related collisional dynamics of a quantum Newton’s cradle in the opposite, strongly
interacting regime, the thermalisation time constant was estimated to be even longer (longer
than ∼70 seconds) [24]. The slow relaxation rates in the 1D Bose gas are related to the fact that
the underlying theoretical model—the Lieb–Liniger model [25, 26]—is integrable in the uniform
limit, which puts additional constraints on the pathways to equilibration compared to those
present in generic (non-integrable) quantum systems. More specifically, the integrable uniform
1D Bose gas is expected to relax to a generalised Gibbs ensemble rather than to the canonical
thermal state [27–33]. In inhomogeneous 1D Bose gases, such as the harmonically trapped
1D quasicondensate studied here, the integrability breaks down and provides a mechanism
for relaxation to a thermal ensemble [34]. Nevertheless, for sufficiently weak confinement,
the system can be regarded as nearly-integrable and hence is expected to undergo a crossover
from transient relaxation to the generalised Gibbs state to a slow decay to the final thermal
ensemble [32]. The overall 1D damping rate is expected to be small enough to be neglected
in experiments. However, in current experiments the observed relaxation rates in quasi-1D
systems are often affected by transverse excitations [35–38] due to the 3D nature of realistic
trapping potentials. Such transverse excitations speed up thermalisation, thus hampering the
characterisation of pure 1D damping. Because of this, pure 1D damping rates have not been
scrutinised experimentally yet, particularly in the weakly interacting, degenerate regime of the 1D
Bose gas, whereas theoretically the question of 1D thermalisation has started to attract attention
only relatively recently [39–41].
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In this paper, we study damping rates of a finite-temperature 1D Bose gas in the weakly
interacting quasicondensate regime, following an excitation of breathing mode oscillations in
a harmonic trap. The specific scenario that we consider is a sudden trap quench from the initial
trap frequency ω0 to a slightly smaller frequency ω, which invokes breathing oscillations; we
simulate these oscillations and their relaxation dynamics using a classical field (c-field) approach.
In doing so, we also revisit and scrutinise the question of the frequency of breathing oscillations,
which has been addressed previously both experimentally [23, 42, 43] and theoretically [44–55].

According to the most recent experimental study by Fang et al. [23], the frequency of such
oscillations in the root-mean-square (rms) width of the real-space density profile undergoes a
smooth transition from ωB ≃p

3ω deep in the quasicondensate regime to ωB ≃ 2ω in the nearly
ideal Bose gas regime as the temperature of the gas is increased. In contrast to this, our numerical
experiment reveals the presence of both oscillation frequencies in a broad range of temperatures
within the quasicondensate regime. We refer to these frequencies as ωB1 and ωB2 and attribute
the breathing modes at ωB1 ≃ p

3ω and ωB2 ≃ 2ω, respectively, to the oscillations of the bulk
and the tail components of the density profile. The observation of two simultaneous breathing
modes is made possible by extending our dynamical simulations to significantly longer durations
than currently possible experimentally, which reveals an oscillatory pattern (in the rms width)
characteristic of beating of two frequencies. Such beating in breathing oscillations, resulting in
“collapses” and “revivals” of the rms width of the density profile, is similar to the one observed
recently in a partially condensed 3D Bose–Einstein condensate [56].

Finally, we extract the damping rates of these two distinct breathing modes from the c-field
simulations and find that the damping rate Γ1 associated with the breathing mode ωB1 is on the
order of Γ1 ≃ 0.04ω (where we use 1/ω as the timescale), whereas the damping rate Γ2 associated
with ωB2 is approximately four times smaller.

2. C -field method for simulating breathing oscillations

The breathing mode oscillations of a 1D Bose gas in the quasicondensate regime are simulated
using the c-field (or classical field) approach as in Refs. [41, 55, 57]. In this approach [58, 59],
the initial thermal equilibrium state of the system is prepared by evolving the simple growth
stochastic projected Gross–Pitaevskii equation (SPGPE) for the complex c-fieldΨC(x, t ),

dΨC(x, t ) =P (C)
{
− i

ħL (C)
0 ΨC(x, t )dt + Γ

kB T

(
µ−L (C)

0

)
ΨC(x, t )dt +dWΓ(x, t )

}
, (1)

with x and t being the position and time, respectively. Here, the projection operator P (C){·} sets
up the high-energy cutoff Ecut between the classical c-field region, comprised of degenerate,
highly occupied low-energy modes, and the thermal region, comprised of sparsely occupied
high-energy modes. Furthermore, Γ is the growth rate, T is the temperature of the effective
reservoir (served by the thermal region) to which the system is coupled, and µ is the chemical
potential of the reservoir that controls the number of particles in the c-field region. In addition,
L (C)

0 is the Gross–Pitaevskii operator defined by

L (C)
0 =− ħ2

2m

∂2

∂x2 +V (x, t )+ g |ΨC(x, t )|2 , (2)

where V (x, t ) is the external trapping potential, which we assume is harmonic, V (x, t ) =
1
2 mω(t )2x2, with frequencyω(t ), and g is the strength of repulsive (g > 0) 1D interatomic contact
interaction potential. The last term, dWΓ(x, t ), in Eq. (1) is a complex-valued stochastic white
noise satisfying the following nonzero correlation:〈

dW ∗
Γ (x, t )dWΓ(x ′, t )

〉= 2Γδ(x −x ′)d t . (3)
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Evolving the above SPGPE from an arbitrary initial state and for sufficiently long time (such
that the memory of the initial state is lost) samples thermal equilibrium configurations of the
system from the grand-canonical ensemble. Averages over a large number of stochastic realisa-
tions of the c-fieldΨC(x, t ) and its complex conjugateΨ∗

C(x, t ) are then used to construct thermal
equilibrium values of physical observables that can be expressed in terms of expectation values of
standard bosonic quantum field operators Ψ̂(x, t ) and Ψ̂†(x, t ), except that their quantum com-
mutating nature is ignored. As an example, the particle number density ρ(x, t ) = 〈Ψ̂†(x, t )Ψ̂(x, t )〉
in the c-field approach is calculated as the stochastic average ρ(x, t ) = 〈Ψ∗

C(x, t )ΨC(x, t )〉 (where
the brackets 〈. . .〉 now refer to stochastic averaging over a large number of stochastic trajectories),
whereas the momentum distribution n(k, t ), where k is in wave-number units, is calculated as
n j (k, t )=Î

d x d x ′e i k(x−x ′)〈Ψ∗
C(x, t )ΨC(x ′, t )〉.

The thermal equilibrium configurations (stochastic realisations) of the c-field ΨC(x, t ), pre-
pared in this way via the SPGPE, form the initial (t = 0) thermal equilibrium state of the sys-
tem. The subsequent dynamics of the system, following a certain excitation protocol, can then
be modelled by evolving the c-field realisations in real time according to the mean-field projected
Gross–Pitaevskii equation [59],

iħ ∂

∂t
ΨC(x, t ) =P (C)

{
L (C)

0 ΨC(x, t ).
}

, (4)

The dynamical protocol that we use here to invoke the breathing mode oscillations is a sudden
quench (at time t = 0) of the harmonic trap frequency from ω0 to a new value ω, i.e.,

V (x, t ) =
{

1
2 mω2

0x2, for t ≤ 0,
1
2 mω2x2, for t > 0.

(5)

The strength of such a quench can be characterised by

ϵ=
(ω0

ω

)2
−1, (6)

which can be either negative or positive depending on the ratioω0/ω being smaller or larger than
one. The numerical value of ϵ determines the amplitude of breathing mode oscillations; for a
small-amplitude quench, with |ϵ|≪ 1, the amplitude of oscillations is linear in ϵ, according to the
scaling solutions to hydrodynamic equations of Ref. [55] (see footnote [33] therein).

Breathing oscillations of a 1D quasicondensate in this particular scenario have been studied
previously experimentally and theoretically in Refs. [23,55]. The focus of those works was the un-
derstanding of the phenomenon of frequency doubling of the oscillations in momentum space.
In the present work, we instead concentrate on analysing the frequencies and damping rates of
breathing oscillations seen in Refs. [23, 55], in analogy with a recent work on thermalisation of a
1D quasicondensate in a quantum Newton’s cradle setup [41].

The simulations of the SPGPE and projected GPE performed in this work were carried out us-
ing the XMDS software package [61] in the computational basis of Hermite–Gauss polynomials.
Unlike the plane-wave basis, which necessitates additional optimisation of the computational
grid to control the effects of the high-energy cutoff [62], the Hermite–Gauss basis is the natural
basis for harmonically trapped systems and represents the most computationally efficient ba-
sis [59, 63, 64]. In this basis, the projection operator P (C){·} that provides the high-energy cutoff,
with Ecut = ħω0(nmax + 1/2), is implemented naturally through the maximum number of basis
states nmax used in the numerical simulations.

Before discussing the results of our simulations, we refer the reader to Appendices A, B
and C, where we recall the classification of different regimes of a weakly interacting uniform
1D Bose gas, the regimes of applicability of the c-field approach, and their extensions to a
harmonically trapped 1D Bose gas. The different regimes here are identified via two dimensional
parameters: γ0 = mg /ħ2ρ0, characterising the interaction strength for a uniform system at
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Figure 1. Typical evolution of the real-space density profile ρ(x, t ) and the momentum
distribution n(kx , t ) of a quasicondensate after a quench of the longitudinal trapping
frequency ω0 → ω, with a quench strength ϵ ≃ 0.563 (ω/ω0 = 0.8). The initial thermal
equilibrium state of the system is characterised by γ3/2

0 T = 0.39 and N = 1109. The
dimensionless position (x/aosc) and momentum (kaosc) are introduced with respect to the
initial harmonic oscillator length aosc = √ħ/mω0 serving as the lengthscale, whereas the
time is normalised to 1/ω. In terms of absolute values, the relevant physical parameters
here were chosen as follows: T = 48 nK, ω0/2π = 10 Hz, and g ≃ 1.4× 10−38 J·m, which
itself can be obtained from g ≃ 2ħω⊥a [60], with the 3D scattering length of a = 5.3 nm
(assuming a gas of 87Rb atoms) and the frequency of transverse harmonic confinement of
ω⊥/2π = 2 kHz (with g ≃ 2ħω⊥a away from confinement induced resonances [60]). With
these parameter values, one obtains γ0 = 8.3× 10−3, T = 517, and the resulting quoted
values of γ3/2

0 T = 0.39 and N = 1109. Here and hereafter, all observables are evaluated as
averages over 2000 stochastic realisations. The dotted vertical lines in (a) are a guide to an
eye showing that the oscillation frequency in the density profile varies depending on the
position |x| from the trap centre (see text).

density ρ0, and T = 2ħ2kBT /mg 2, characterising the temperature. Furthermore, the c-field
approach can, in fact, be parametrised in terms of a single dimensionless parameter, γ3/2

0 T [41,
55, 58, 65]. For a harmonically trapped (inhomogeneous) system, the roles of ρ0 and γ0 are
taken by their respective values in the trap centre, with γ3/2

0 T still being a relevant single
dimensionless parameter that combines interaction strength and tempeprature. However, to
completely characterise such a system, one needs to specify an additional parameter, such as the
total number of atoms N , which itself is governed (for fixed values of γ0 and T ) by the underlying
trap frequency ω0.

In Fig. 1, we show typical evolution of the density profile ρ(x, t ) and the respective momentum
distribution n(kx , t ), after a sudden quench of the trap frequency as described above. In this
example, the initial state is characterised by γ3/2

0 T = 0.39 and a total number of atoms N =
1109, whereas the quench strength is ϵ = 0.563 (ω/ω0 = 0.8). We see here that both ρ(x, t )
and n(kx , t ) display breathing oscillations after the quench, with n(kx , t ) showing additional
peaks occurring at twice the frequency of oscillations of ρ(x, t ). This phenomenon is known as
frequency doubling [23] and can be interpreted, via a classical hydrodynamic approach [55] as a
result of a self-reflection mechanism at the inner turning point due to the mean-field interaction
energy barrier. Similarly to the results of Ref. [55], we observe the frequency doubling in this
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example because the system under these parameters is the regime where the contribution of the
hydrodynamic velocity field dominates the contribution of the thermal velocities (which show
no frequency doubling). As the system evolves in time the oscillations in both the density and
momentum distributions can be seen to damp out, with the damping somewhat more apparent
in the momentum distribution.

The dotted vertical lines in Fig. 1(a) are shown to guide the eye in the observation that
the oscillation frequency varies depending on the position |x|; the frequency of local density
oscillations near the trap centre is seen to be lower than the local frequency in the tails of
the density distribution. Indeed, while the first density maximum in the trap centre and the
respective minimum in the tails are aligned to a straight vertical line, the ninth maximum in the
trap centre is ahead of the respective ninth minimum in the tails, implying that the central part
of the cloud oscillates at a lower frequency.

3. Breathing dynamics

To further characterise the dynamics and damping of the breathing oscillations, we calculate the
rms width of the density profile, given by

∆xRMS(t )=
[

1

N

ˆ
dxρ(x, t )x2−

( 1

N

ˆ
dxρ(x, t )x

)2
]1/2

, (7)

where N = ´ dxρ(x) is the total number of particles.

0 20 40 60 80 100

6.5

7

7.5

8

8.5

Figure 2. Root-mean-square width∆xRMS(t ) of the density profileρ(x, t ) shown in Fig. 1(a),
normalised to harmonic oscillator length aosc = √ħ/mω0. The black dots are data points
from c-field simulations, whereas the full (orange) line is a fit using Eq. (8).

In Fig. 2, we show the calculated∆xRMS(t ) as a function of time, for the density profile ρ(x, t ) of
Fig. 1(a). A distinct feature of the rms width is the presence of beating of two oscillation frequen-
cies, which was already apparent in Fig. 1(a). This beating suggests that the quasicondensate,
after the quench of the trapping potential, oscillates not at a single breathing mode frequency,
but as a superposition of two dominant frequencies.

To extract the beating frequencies from the oscillations of the rms width, we fit a sum of two
cosine functions, each with its own damping term,

∆xRMS(t ) = A1 cos
(
ωB1t +φ1

)
e−Γ1t + A2 cos

(
ωB2t +φ2

)
e−Γ2t +C . (8)
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Here, ωBi (i = 1,2) are the two breathing mode frequencies, Ai , Γi and φi are the respective
amplitudes, damping rates, and the phases of each breathing mode, and the last term C serves as
a constant background. As can be seen from Fig. 2, Eq. (8) fits very well to the rms width∆xRMS(t )
calculated from the c-field simulations, confirming that the nontrivial oscillatory dynamics of the
rms width∆xRMS(t ) is indeed a result of beating of two components of the 1D Bose gas, breathing
at two distinct frequencies ωB1 and ωB2.

Similar beating in the rms width has been observed in 3D systems [56], where the effect
was referred to as “collapses” and “revivals” of the rms width due to in-phase and out-of-phase
oscillations of the condensed and noncondensed fractions of the gas.

We further note that the same fitting formula, Eq. (8), works very well when applied to the
rms width of the density distribution evaluated for single stochastic realisations of the SPGPE
and projected GPE, albeit with slightly different (fluctuating) values of the oscillation amplitudes
A1,2 and the background constant C . This implies that the decay of oscillations in time is indeed
consistent with exponential damping, rather than is a seeming decay due to blurring or averaging
over many stochastic realisations with varying relative phase offsets.

3.1. Beating frequencies

To understand the emergence of two distinct frequencies in the breathing oscillations of a 1D
quasicondensate, we recall the results of Ref. [55], in which the breathing dynamics were studied
within the classical hydrodynamic approach. The relevant regimes considered in Ref. [55] were: a
weakly interacting 1D Bose gas deep in the quasicondensate regime, γ−1

0 ≪T ≪ γ−3/2
0 (or gρ0 ≪

kBT ≪p
γ0ħ2ρ2

0/2m), characterised by suppressed density fluctuations and a fluctuating phase;
and (b) nearly ideal but highly degenerate 1D Bose gas, γ−3/2

0 ≪ T ≪ γ−2
0 (or

p
γ0ħ2ρ2

0/2m ≪
kBT ≪ħ2ρ2

0/2m), in which both the density and phase fluctuate (see also Appendices A, B and C).
According to Refs. [55], the frequencies of breathing mode oscillations in the quasicondensate

and nearly ideal degenerate Bose gas regimes, found from hydrodynamic scaling solutions, are
given by ωB =p

3ω and ωB =2ω, respectively. We further note here, that the breathing frequency
ωB = 2ω extends into the nearly ideal but nondegenerate (classical) gas regime [51, 53–55],
corresponding to T ≫ γ−2

0 , however, this regime is beyond the applicability of the c-field
approach (see Appendices B and C) that we use in this work.

Other theoretical and experimental studies of harmonically trapped 1D Bose gas [23, 42, 43,
45, 47–54], have predicted and observed breathing mode oscillation frequencies close to 2ω andp

3ω. Furthermore, the breathing mode dynamics was predicted [49, 51, 52] to display the so-
called reentrant behaviour, wherein the frequency of oscillations was shown to undergo a smooth
crossover from the ideal Bose gas value of 2ω down to

p
3ω in the weakly interacting gas, and then

back to 2ω in the strongly interacting regime.
However, as we have seen from our c-field simulations of the previous section, the breathing

oscillations in a finite temperature quasicondensate display a beating of two distinct frequencies.
This suggests that in a weakly interacting 1D Bose gas, the bulk of the quasicondensate density
near the trap centre, where the interactions are more important, oscillates at the frequency close
to

p
3ω, whereas the tails of the density distribution, behaving more like an ideal (noninteracting)

Bose gas, oscillate at the frequency closer to 2ω. To confirm this hypothesis, we now simulate the
dynamics of breathing oscillations for different values of the dimensionless parameter γ3/2

0 T ,
varying it in the range 0.39≤γ3/2

0 T ≤1 (with T = 517, γ0=8.3×10−3, and N = 1109 at the lower
bound, and T = 517, γ0=1.5×10−2, and N = 609 at the upper bound). This scans the conditions
of our system in the trap centre from the thermal quasicondensate regime towards the crossover
boundary with the nearly ideal degenerate Bose gas. Upon doing so, we extract the breathing
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Figure 3. Breathing mode frequenciesωB1 andωB2 as a function of γ3/2
0 T extracted from c-

field simulations by using the fitting equation Eq. (8). The error bars account for fitting error
only and indicate a 95% confidence interval. Two different sets of data points correspond to
two values of the trap quench strength ϵ: ϵ≃ 0.235 (ω/ω0 = 0.9) and ϵ≃ 0.563 (ω/ω0 = 0.8).
The first data point here, which is for the smallest value of γ3/2

0 T = 0.39 and N = 1109, is
the same as in Fig. 1. The subsequent, increasingly larger values of γ3/2

0 T were achieved
by keeping the temperature T and the initial trap frequency ω0 the same and scanning the
chemical potential of the system, which then determines the total number of atoms N (as
well as the peak density ρ0 and γ0). The respective values of N as a function of γ3/2

0 T for
all data points are shown in Fig. 7 below.

mode frequenciesωBi (i =1,2) and the respective damping rates Γi by fitting the rms width of the
density distribution to Eq. (8) for each value of γ3/2

0 T .
In Fig. 3, we show the extracted frequencies as a function of γ3/2

0 T , for two different values of
the quench strength ϵ. As we see, in both cases, and for the smallest values of γ3/2

0 T , the extracted
breathing mode frequency ωB1 is indeed close to the value of ωB1 =

p
3ω, whereas ωB2 is closer

to ωB2 = 2ω. As the dimensionless parameter γ3/2
0 T is increased towards the degenerate ideal

Bose gas regime, γ3/2
0 T ≃1, the frequencies of both components increase too, withωB1 deviating

further away from the value of
p

3ω and both ωB1 and ωB2 tending towards 2ω.
One can identify the frequencies ωB1 and ωB2, respectively, with the breathing mode oscil-

lations of the bulk of the quasicondensate near the trap centre (dominated by higher occu-
pancy, low-energy states) and the tails of the density profile (dominated by lower occupancy,
high-energy states). Indeed, particles near the trap centre have the local value of γ3/2

x T <1 (with
γx =mg /ħ2ρ(x)) and hence are deeper in the quasicondensate regime, whereas particles in the
tails of the density distribution have the local value of γ3/2

x T >1 and can be approximated as an
ideal degenerate Bose gas.

This conclusion can be further verified if we inspect the local dynamics of the momentum
distribution of the gas, n(kx , t ). In Fig. 4, we can see the difference in the behaviour of the
momentum distribution at kx = 0 and at kx = 16/aosc. While the oscillations at kx = 0 display
frequency doubling (ω(k) = 2ωB1) [23, 55], which is a property of a 1D Bose gas deep in the
quasicondensate regime, the momentum distribution at kx =16/aosc does not display frequency
doubling and oscillates at frequencyω(k) close toωB2. The oscillation frequencies extracted from
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Figure 4. Evolution of the momentum distribution n(kx , t ) at kx = 0 and at kx = 16/aosc,
for γ3/2

0 T = 0.39, N = 1109, and ϵ = 0.563 (ω/ω0 = 0.8). The momentum distribution at

kx = 0 displays frequency doubling, with ω(k) = 2ωB1, which is characteristic of a system
deep in the quasicondensate regime. On the other hand, the momentum distribution at
kx = 16/aosc does not display frequency doubling and oscillates at ω(k) = ωB2, which is
characteristic of an ideal Bose gas regime.

the two curves in Fig. 4 yield ωB1 ≈ 1.79ω for n(kx = 0, t ) and ωB2 ≈ 1.92ω for n(kx = 16/aosc, t ).
These frequencies are close to the breathing mode frequencies in Fig. 3, extracted from the rms
width of the respective density distribution. Thus, from this point onwards, we will refer to the
component with breathing frequency ωB1 as the bulk component, whereas the component with
breathing frequency ωB2 will be referred to as the tail component.

As we will show below—after introducing (see Sec. 3.2) and analysing the relative weight of the
bulk and tail components—the same conclusion regarding the oscillation frequencies of the bulk
and tail components can be arrived at by inspecting the local dynamics of the density distribution
ρ(x, t ) near the trap centre and in the tails of the distribution.

We pause here momentarily to emphasise the key differences between our findings and those
reported in previous studies of breathing mode oscillations in a weakly interacting 1D Bose gas.
While previous studies have also predicted a smooth crossover of the oscillation frequency from
∼p

3ω towards 2ω as the temperature is increased, the frequency in question has always been
what we refer here to as the frequency of oscillations of the bulk component ωB1. While we
observe the same crossover for the ωB1 component, our simulations indicate that: (i) there
is a second distinct breathing frequency ωB2, which is for the tail component, and (ii) ωB2

undergoes a similar crossover from the value ≈ 1.9ω towards 2ω as γ3/2
0 T is increased within

0.39 ≤ γ3/2
0 T ≤ 1.

Apart from exciting the breathing oscillations via a sudden change of the trap frequency,
we have also considered a weak sinusoidal modulation of the trap strength, V (x, t ) = [1 +
0.05sin(ωB t )]V (x,0), and of the trap frequency, ω(t ) = [1 + 0.05sin(ωB t )]ω0, for four oscilla-
tion periods, with three different values of the modulation frequency ωB = {

p
3ω0, 1

2 (
p

3ω0 +
2ω0),2ω0}. In these alternative protocols, we have observed no qualitative changes in the en-
suing breathing oscillations. Namely, the sinusoidal modulation would still excite oscillations at
two distinct frequencies displaying beating. This is again similar to the observations reported in
Ref. [56] for a partially condensed 3D Bose–Einstein condensate. Because of this, we will continue
our analysis of breathing oscillations for the sudden quench protocol only, Eq. (5).
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Finally, we comment on a weak dependence of our results on the choice of the cutoff energy
Ecut, or equivalently the maximum number of harmonic oscillator basis states nmax used in our
simulations, with Ecut = ħω0(nmax +1/2). All results presented so far and hereafter are obtained
for an optimal choice of Ecut that results from nmax = 250. As we show in Appendix D, this choice
is justified by the best match of the initial thermal equilibrium density distribution ρ(x, t = 0)
with the density profile obtained from the solution to the exact Yang–Yang thermodynamic
equations [66], combined with the local density approximation [67]. Finding such a match,
particularly in the tails of the distribution, is a subtle problem as it is in competition with the
applicability of the c-field approximation requiring an energy cutoff via the projector operator in
Eqs. (1) and (4). Moreover, the cutoff dependency depends strongly on the observable of interest
that is being calculated [41, 55, 57, 68–70]. For the breathing mode oscillations frequencies, the
cutoff dependency is weak; for example, changing nmax from nmax = 250 to 300 and 200 results
in less than ±2.2% change in the extracted frequencies ωB1 and ωB2 (see Fig. 12 in Appendix D).
Thus, while the quantitative details of our main findings have a weak cutoff dependence, the
respective qualitative aspects and ensuing conclusions are essentially cutoff independent.

3.2. Relative weight of breathing components

To quantify the relative contribution of the beating components (bulk and tail components) to
the total breathing oscillations, we introduce the relative weight of the bulk component,

K = A2
1

A2
1 + A2

2

. (9)

The relative contribution of the tail component is then given by 1−K , and Eq. (8) for the rms
width can be rewritten as

∆xRMS(t ) = A
[p

K cos
(
ωB1t +φ1

)
e−Γ1t +

p
1−K cos

(
ωB2t +φ2

)
e−Γ2t

]
+C , (10)

where A =
√

A2
1 + A2

2.

In Fig. 5, we plot the relative weight K as a function of γ3/2
0 T , for two different values of

the quench strengths ϵ as in Fig. 3. As we see, the weight of the bulk component K , behaving
predominantly as a quasicondensate with suppressed density fluctuation, but a fluctuating
phase, has its maximum value for the smallest γ3/2

0 T and it decreases with γ3/2
0 T . Conversely,

the contribution of the tail component 1−K , behaving as a nearly ideal degenerate Bose gas,
increases with γ3/2

0 T . With this observation at hand, we can now return to the results of Fig. 3
and interpret them as follows. For system parameters deep in the quasicondensate regime
(γ3/2

0 T <1), a large fraction of particles occupy the low-energy states, and the bulk of the system
exhibits collective breathing oscillations (ωB1) close to the pure mean-field behaviour of a zero-
temperature system. As we go to higher values of γ3/2

0 T (by, e.g., increasing the temperature
of the system, or reducing the peak density ρ0 and hence increasing γ0), a larger fraction of
particles begin to thermally populate higher-energy states. As a result, a second breathing
mode (ωB2) becomes more pronounced, with the behaviour closer to that of a degenerate ideal
Bose gas. Then, as we reach the boundary with the nearly ideal degenerate Bose gas regime
(γ3/2

0 T ∼ 1), almost all of the particles occupy high-energy modes. The collective breathing
mode, characteristic of low-energy particles, begin to disappear (with K going down) and the
whole system now exhibits breathing oscillations with frequency ωB2.

Having introduced the relative weights of the bulk (K ) and tail (1−K ) components, we can
now also analyse the local dynamics of the density distribution ρ(x, t ) in the trap centre (at
x =0) and in the tails (at x/aosc ≫1) of the distribution with the aim to further reassert that the
breathing frequency ωB1 can be attributed to low-energy atoms populating primarily the bulk
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Figure 5. Relative weight K of the bulk component in the breathing oscillations of a 1D
quasicondensate as a function of γ3/2

0 T for two different quench strengths ϵ. The error
bars account for the fitting error only and indicate a 95% confidence interval.

component, whereas the breathing frequency ωB2 can be associated with high-energy atoms
populating primarily the tails of the density distribution. In Fig. 6 we show an example of local
evolution of the density distribution near the trap centre x=0 and in the tails around x=20 aosc.
As we see, both curves still display beating of two frequencies; the two frequencies can be fitted
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Figure 6. Local evolution of the density distribution near the trap centre, ρ(x = 0, t ) (a),
and in the tails, ρ(x = 20 aosc, t ) (b), for γ3/2

0 T = 0.39 and a quench strength of ϵ = 0.563
(ω/ω0 = 0.8). The black dots are data points from c-field simulations, whereas the full
(orange) line is a fit using the right-hand-side of Eq. (10). To reduce the statistical noise, we
averaged the densities over a small region x/aosc ∈ [−1,1] and x/aosc ∈ [19,21], respectively.
The dynamical fit to the central density ρ(x = 0, t ) yields an oscillation frequency ωB1 =
1.77ω with the relative weight of K = 0.96, and ωB2 = 1.90ω with the respective relative
weight of 1−K = 0.04. On the other hand, the fit applied to the tails, ρ(x = 20 aosc, t ), yields
an oscillation frequency ωB1 = 1.80ω with the relative weight of K = 0.23, with the other
frequency beingωB2 = 1.91ω and 1−K = 0.77. In both cases, the oscillation frequencies are
close to those extracted from the evolution of the rms width, whereas the relative weight K
extracted from the tails is very different (see text).
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Figure 7. Computed condensate fraction N0/N (full circles, left vertical axis) and the
respective total N (open circles, right vertical axis) of the initial state of the 1D Bose gas
as a function of γ3/2

0 T , for a quench strength ϵ≃ 0.563.

with the same formula as the right-hand-side of Eq. (10); and both frequencies are approximately
the same as those extracted from the rms width as in Fig. 2. At the same time, we find that the
relative weight of the ωB1 component in the trap centre is K = 0.96. This is significantly larger
than the value of K extracted from the rms width. On the other hand, the relative weight on the
same ωB1 component, but in the tails of the distribution, drops down to a much smaller value of
K =0.23. Reciprocally, the relative weight (1−K ) of the ωB2 component dominates the beating in
the tails of the distribution, with 1−K =1−0.23=0.77, but is much smaller in the trap centre.

A further insight into the composition of the bulk and tail components of the 1D Bose gas can
be gained by computing the condensate fraction N0/N of the initial state of the system as per
Penrose–Onsager criterion [71]. The condensate fraction N0/N is plotted in Fig. 7 as a function
of γ3/2

0 T (for a quench strength ϵ≃ 0.563), together with the respective total number of atoms in
the system N , where we note that the dimensionless parameter γ3/2

0 T was scanned by changing
the total number of particles N (hence changing the peak density ρ0 and γ0) while maintaining
the same absolute temperature T (and hence the same value of T ). As we see, the maximum
condensate fraction, that is attained here, is approximately 0.14 at the lowest value of γ3/2

0 T ,
whereas the minimum condensate fraction is ≃ 0.07 at the largest γ3/2

0 T . For the maximum
condensate fraction of only 0.14, the corresponding relative weight K of the bulk component
is noticeably larger (K ≃0.33, from Fig. 5). This implies that the bulk component is composed not
only of the particles in the condensate mode, but also of particles in highly-occupied, low-energy
states above the condensate mode.
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Figure 8. Computed thermal coherence length of the initial state of the 1D Bose gas at
different values of γ3/2

0 T , for a quench strength ϵ ≃ 0.563. The error bars account for the
fitting error only and indicate a 95% confidence interval.

The same conclusion can be arrived at by analysing an alternative quantity—the initial ther-
mal phase coherence length lφ in the trap centre—which, unlike the condensate fraction, is an
intensive quantity. For a uniform quasicondensate at density ρ and temperature T , this is given
by lφ = 2ħ2ρ/mkB T [65,72,73]. For a harmonically trapped system, we compute the initial (t = 0)
thermal phase coherence length in the trap centre by fitting the initial normalised first-order cor-
relation function g (1)(x, x ′; t =0) = 〈Ψ∗

C(x,0)ΨC(x ′,0)〉/√ρ(x,0)ρ(x ′,0) at x ′ = 0 with an exponen-
tial g (1)(x, x ′; t =0) = exp(−|x − x ′|/2lφ) [65, 72–74]. Here, the local phase coherence length is ex-
pected to be equal to lφ = 2ħ2ρ0/mkB T , in the local density approximation, and our fitted val-
ues are indeed very close to this analytic result. The fitted values of lφ as a function γ3/2

0 T are
plotted in Fig. 8, where we see qualitatively the same trend as for the condensate fraction N0/N .
For example, for the lowest value of γ3/2

0 T sampled in Fig. 8, the thermal phase coherence length
is only a very small fraction (∼0.045) of the full-width-at-half-maximum (FWHM) of the initial
density distribution, yet the relative weight K of the bulk component is K ≃ 0.33. This again im-
plies that the bulk component is composed not only of the particles in the locally phase coherent
region, physically similar to the condensate fraction, but extends beyond this region.

4. Damping of breathing oscillations

Having identified that the breathing oscillations of a 1D quasicondensate involve beating of two
distinct frequencies, corresponding to the oscillations of the bulk and tail components, we now
characterise the respective damping rates, Γ1 and Γ2, observed in Fig. 2 and extracted from fitting
the results of c-field simulations to Eq. (10). The damping rates extracted in this way are shown
in Fig. 9 as a function of γ3/2

0 T , for two different quench strengths ϵ. Similarly to the frequencies
ωB1 and ωB2, the damping rates Γ1 and Γ2 are different from each other and weakly depend on
the quench strength ϵ.

The damping rate Γ2 associated with the frequency ωB2 of the tail component is smaller than
the damping rate Γ1 associated with the frequencyωB1 of the bulk component. This is consistent
with our earlier observation that the particles comprising the tail component behave as a nearly
ideal Bose gas which is expected to have very little to no damping. The damping rate Γ1 is
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Figure 9. Damping rates Γi (i = 1,2) of the breathing oscillations in a 1D quasicondensate
as a function of the dimensionless parameter γ3/2

0 T , for two different quench strengths
ϵ. The error bars on data points account for the fitting error only, which indicates a 95%
confidence interval.

approximately 3−4 times larger than Γ2; it increases initially with γ3/2
0 T , before saturating to a

value of Γ1≃0.045ω at γ3/2
0 T ≃0.6 (for a quench strength ϵ=0.563) and then decreasing slightly as

we approach the upper boundary of the quasicondensate regime, γ3/2
0 T ∼1. For experimentally

typical values of ω0/2π = 10 Hz (and hence ω/2π = 8 Hz for ϵ = 0.563), the damping rate of
Γ1 ≃0.04ω corresponds to Γ1 ≃2 s−1 (or a damping time constant of τ1 =1/Γ1 ≃0.5 s), whereas
the damping rate Γ2 is four times smaller (τ2=1/Γ2≃2 s).

Similarly to damping of low-energy collective excitations in a harmonically trapped and par-
tially Bose-condensed 3D systems at finite temperatures [6, 7, 11, 16, 75], the dominant damping
mechanism of the bulk component in our 1D quasicondensate can be expected to be Landau
damping. In Landau damping, a low-energy collective excitation of energy ħωB1 and a thermal
excitation of energy Ei are annihilated (created) and another thermal excitation of energy E j is
created (annihilated). Within the c-field approach employed in our numerical simulations, this
damping mechanism is implicitly present through the interaction term in the GPE for the c-field
ΨC(x, t ) as the “classical region” incorporates not only the condensate mode but also many low-
lying excited modes that have a relatively high thermal occupation.

Even though the damping rate of low-energy excitations due to Landau mechanism for a 1D
uniform quasicondensate has been calculated in Ref. [76], we defer a critical analysis of this work
and its possible application to our trapped system to a future study. We nevertheless note here
that any possible comparison of the damping rate Γ1 from c-field simulations and that obtained
from Landau mechanism should take into account the fact that in the c-field approximation the
“classical region” includes only a fraction of thermal particles (that belong to highly occupied
modes) and hence the extracted value of Γ1 is likely to underestimate the damping rate compared
to alternative predictions that take into account all thermal particles. At the same time, the theory
of Landau damping conventionally assumes that the thermal excitations are always in thermal
equilibrium, whereas this assumption does not apply to our system because quenching the trap
frequency also excited a collective breathing oscillation of the tail component, which acts as a
dynamical (rather than a static) bath of thermal excitations.
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In an equivalent quench scenario in a 3D system, these questions can, in principle, be ad-
dressed using, e.g., the Zaremba–Nikuni–Griffin (ZNG) formalism [21, 77], where the condensate
part of the system is described by the generalised Gross–Pitaevskii equation, whereas the non-
condensate (thermal) part is described by the quantum Boltzmann equation. However, the ZNG
formalism cannot be directly applied to 1D quasicondensate due the fact that the fractional occu-
pancy of the ground-state condensate mode in 1D does not dominate the occupancies of excited
modes as it does in 3D. Accordingly, a simple separation into a condensate and thermal excita-
tions is not justified here. For the same reasons, our observation of two excitation modes cannot
be simply interpreted as a consequence of a standard two-fluid model applicable to 3D systems,
where the two fluids are represented by the superfluid (condensate) and the normal (thermal)
components of the gas and where such a phenomenon would be common [2,56]. Apart from this,
we note that the two-fluid model is applicable in the strongly collisional regime (when the damp-
ing rate is much larger than the angular frequency of excitation modes), whereas the breathing
mode excitations studied in this work are in the opposite weakly collisional regime. Overall, our
finding call for a further study beyond the classical field approximation, which could perhaps be
accomplished by generalising the GNZ formalism to 1D systems, wherein the evolution of the
entire c-field would be coupled to a quantum Boltzmann equation.

5. Summary

In conclusion, we have studied the breathing oscillations of a harmonically trapped 1D Bose gas
in the quasicondensate regime, invoked after a sudden quench of the trap frequency. Using the c-
field approach for sampling the initial thermal equilibrium state and simulating the subsequent
post-quench dynamics, we observed beating of two breathing modes. The two breathing modes
oscillate at two distinct frequencies ωBi (i =1,2) and have their own damping rates Γi . Further-
more, they can respectively be attributed to low-energy particles in the bulk and high-energy par-
ticles in the tails of the density distribution of the gas. The bulk component breathes with the fre-
quency close to the expected breathing mode frequency of a zero temperature system,ωB1 ≃

p
3ω

for most of the quasicondensate region, whereas the breathing mode frequency of the tail com-
ponent is closer to that of an ideal Bose gas, ωB2 ≃ 2ω. The damping rates Γ1 and Γ2, extracted
from the c-field simulations for typical experimental parameters, have the associated damping
time constants on the order of 0.5 s and 2 s, respectively, for most of the values of γ3/2

0 T consid-
ered.

In order to experimentally observe the predicted beating of two breathing modes, one needs to
ensure that the breathing dynamics is monitored for sufficiently long time as to detect reduction
and subsequent revival of the amplitude of oscillations due to beating. One has to also ensure
that the system is deep in the 1D regime as to eliminate additional damping mechanisms due
to transverse excitations, which can prevent the revivals. Taking the beat frequency ωbeat =
ωB2 −ωB1 as simply ωbeat = 2ω−p

3ω, and assuming ω/2π= 8 Hz, one obtains the beat period of
the order of 0.5 seconds. This is well within the reach of the current 1D Bose gas experiments.

Note added. After completing this work and submitting the manuscript, we became aware of
Ref. [78] which analyses phonon decay in 1D quasicondensates via the Landau-Beliaev damping
mechanism. The analysis of Ref. [78] goes beyond that of Ref. [76] in terms of underlying
assumptions and considerations, however, their analytic prediction for the damping rate appears
to be applicable to a different regime than the low-energy breathing excitations studied in the
present work. Accordingly, a direct comparison of our numerical results with the said analytic
prediction is not possible at the moment. This in turn highlights the need for either revisiting and
extending the theory of Landau–Beliaev damping of trapped 1D Bose gases, or else developing an
analytic understanding of the decay of 1D breathing oscillations via an alternative mechanism.
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Appendix A. Regimes of a weakly interacting uniform 1D Bose gas

For a uniform 1D Bose gas at linear density ρ, the different thermal equilibrium regimes have
been identified in Refs. [67, 79] through the analysis of local density-density correlation func-
tion. They can be characterised by just two parameters, the dimensionless interaction strength
γ = mg /ħ2ρ and dimensionless temperature T = kBT /(mg 2/2ħ2). An alternative choice for
the dimensionless temperature is to define it via the temperature of quantum degeneracy,
Td = ħ2ρ2/2mkB, via τ = T /Td [79], where we note that the two temperatures are related by
τ = T γ2. However, as was shown in Ref. [67], the temperature T (unlike τ) is more conve-
nient to also characterise an inhomogeneous system within the local density approximation as
it can serve as the global temperature of the system that does not depend on the local density.
The phase diagram in the (γ,T ) parameter space [79], for a weakly interacting system, γ≪ 1,
is shown in Fig. 10, where we note that the different sub-regimes are smooth crossovers. In this
diagram, the different sub-regimes that can be treated analytically using approximate theoretical
approaches are first introduced at the level of a quasicondensate, characterised by suppressed
density fluctuations (similar to a true condensate) but fluctuating phase [80], and a nearly ideal
Bose gas in which both the density and phase fluctuate.

In terms of the underlying theoretical approaches, the quasicondensate regime can be de-
scribed by the Bogoliubov theory [74,79,81], in which one can further distinguish the sub-regimes
dominated by quantum (region I) or thermal (region II) fluctuations, corresponding, respectively
to kBT ≪ gρ (or T ≪ γ−1) and gρ ≪ kBT ≪ p

γħ2ρ2/2m (or γ−1 ≪ T ≪ γ−3/2). In Ref. [79],
these sub-regimes were referred to as GPa and GPb regimes, respectively.

The nearly ideal Bose gas, on the other hand, can be treated using the perturbation theory
with respect to γ around the ideal (noninteracting) Bose gas [74, 79, 81]. Here, we can further dis-
tinguish between a highly degenerate nearly ideal Bose gas (τ≪1, region III) and a nondegener-
ate, nearly classical ideal gas (τ≫1, region IV). These two sub-regimes, correspond, respectively,
to

p
γħ2ρ2/2m ≪ kBT ≪ ħ2ρ2/2m (or γ−3/2 ≪ T ≪ γ−2) and ħ2ρ2/2m ≪ kBT (or γ−2 ≪ T ).

In Ref. [79], these sub-regimes were referred to as “decoherent quantum” (DQ) and “decoherent
classical” (DC) regimes, respectively.

Appendix B. Regime of applicability of the c-field approach

Turning now to the region of applicability of the c-field approach, we note that it is adequate for
describing thermal (rather than quantum) fluctuations in highly degenerate Bose gases. As such,
in the phase diagram of Fig. 10, it spans the sub-regimes II and III.

More explicitly, the condition of applicability of the c-field approach, |µ| ≪ kBT [58], where
µ is the chemical potential, can be rewritten as gρ≪ kBT in the thermal quasicondensate sub-
regime II, where µ≃ gρ. In dimensionless from, this coincides with the temperature lower bound
on the thermal quasicondensate regime, γ−1 ≪T .
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Figure 10. Crossover phase diagram of a weakly interacting (γ≪ 1) uniform 1D Bose gas,
showing the classification of different sub-regimes in the parameter space (γ,T ), and the
region of applicability of the c-field approach (see text).

On the other hand, in the degenerate ideal Bose gas sub-regime III, the absolute value of
the chemical potential (µ < 0) can be approximated by |µ| ≃ m(kB T )2/2ħ2ρ2 [58, 82]. Hence,
the condition of applicability of the c-field approach here can be rewritten as kB T ≪ 2ħ2ρ2/m,
which we note agrees (ignoring numerical factors of the order of one) with the upper bound on
the dimensionless temperature T in the degenerate nearly ideal Bose gas regime, T ≪ γ−2.
Combining the two sub-regions, γ−1 ≪ T and T ≪ γ−2, gives γ−1 ≪ T ≪ γ−2 for the regime
of applicability of the c-field approach, which is shown as the shaded area in Fig. 10.

Furthermore, a remarkable property of the c-field approach is that one can show (after
introducing appropriately defined time-, length-, and energy-scales; see Refs. [41, 55, 58, 65]
for details) that the corresponding equations of motion can be rewritten in a dimensionless
form in such a way that they depend only on a single dimensionless parameter γ3/2T (with
γ3/2T ≡ 2kB T /

√
gρ(ħ2ρ2/m), rather than on two independent dimensionless parameters γ and

T . In terms of this single parameter, the two relevant regimes of the weakly interacting 1D
Bose gas can be rewritten as γ1/2 ≪ γ3/2T ≪ 1 (region II), and 1 ≪ γ3/2T ≪ γ−1/2 (region III),
whereas the overall region of applicability of the c-field approach is obtained by combining the
two, γ1/2 ≪ γ3/2T ≪ γ−1/2.

As a further remark, we note here that the crossover boundaries between the different regimes
of a weakly interacting 1D Bose gas, that are dominated by thermal rather than quantum fluc-
tuations, were identified here through the properties of short-range density-density or second-
order correlation functions. If, however, one is concerned with the behaviour of the first-order or
phase correlation function at large relative distances, or equivalently the momentum distribution
at low momenta, then the lower bound on the temperature, in which the physics is dominated by
thermal fluctuations, is reduced from gρ≪ kBT down to gρe−2π/

p
γ ≪ kB T ; for further details,

see footnotes [59] and [63] in Ref. [65].
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Appendix C. Regimes of a harmonically trapped gas

In a harmonically trapped (inhomogeneous) 1D Bose gas, with longitudinal trap potential V (x) =
1
2 mω2x2, the linear density ρ becomes position-dependent and describes the density profile
of the gas ρ(x). Accordingly, the dimensionless interaction strength also becomes position
dependent, γ(x) = mg /(ħ2ρ(x)), while the dimensionless temperature T continues to serve as
a global equilibrium temperature of the system. For a given chemical potential µ, which fixes the
total number of particles N in the system in a given trap, the density profile ρ(x) and its peak
value in the trap centre ρ0 ≡ ρ(0) are unique. Therefore the peak density ρ0 can be used to define
a dimensionless interaction strength γ0 = mg /(ħ2ρ0) that plays the role of a global interaction
parameter for the entire system.

As shown in Refs. [41, 55], the combination γ3/2
0 T remains relevant for efficient parametrisa-

tion of a harmonically trapped system, except that now one needs an additional parameter—the
trap frequency ω—to completely characterise the system. The dimensionless trap frequency ω is
defined according to ω̄=ωħ5/3m1/2/[g 2/3(kB T )2/3], and we refer the reader to Ref. [41] for further
details.

The remaining consideration that needs to be taken into account here—in view of the region
of applicability of the c-field approach to a harmonically trapped system—is the following.
If the temperature and the peak density of the trapped gas is chosen to lie in the thermal
quasicondensate region II, γ1/2

0 ≪ γ3/2
0 T < 1, then, for typical experimental parameters, such

as γ0 ∼ 10−3 − 10−2 and T ∼ 102 − 103, the tails of the density distribution will end up lying in
the nearly ideal degenerate Bose gas regime III, 1 < γ(x)3/2T ≪ γ(x)−1/2. This is because the
local density ρ(x) decreases with x away from the trap centre x =0, leading to increasing values
of γ(x). Accordingly, the local conditions of the gas (in the local density approximation sense,
with the local chemical potential given by µ(x) = µ−V (x) [67]) will—at some position x—cross
the upper bound of region II and enter the region III. This is not an issue for the c-field approach,
because it is applicable in both regions II and III. If, on the other hand, the peak density already
lies in region III, then the tails of the distribution may end up (depending on the value of T ) in
the nearly classical ideal gas regime IV, where the c-field approach is no longer applicable. For
these reasons, all numerical simulations carried out in this work are restricted to the range of
γ3/2

0 T ∈ [0.39,1] (with T ≃ 517 kept the same), so that both the bulk and the tails of the gas lie in
the regime of applicability of the c-field approach.

Appendix D. Cutoff dependencies

As a rule of thumb, the high-energy cutoff Ecut in the c-field approach is usually chosen in such
a way that the mode occupancy N cut of the highest energy mode included in the computational
basis remains larger than or on the order of one [58, 59]. Even then, the optimum cutoff depends
strongly on the observable of interest that is being calculated and hence can somewhat deviate
form this common prescription. Furthermore, as was recently shown in a series of works by
Pietraszewicz and Deuar [68–70], the optimum cutoff in energy Ecut for 1D Bose gases should be
chosen even higher than in most prior determinations; in terms of the cutoff mode occupancy,
it corresponds to N cut ≃ 0.78, which is lower than one. As shown in Refs. [68–70], this lower
optimum value of N cut is needed to obtain the correct kinetic energy of the 1D Bose gas, but does
not detrimentally affect other observables.

In this appendix, we go somewhat further than this and show that even a lower cutoff mode
occupancy is required in our simulations in order to faithfully reproduce the tails of the density
distributions, so that they are closer to the density profiles that can be obtained from exact
Yang–Yang thermodynamics in the local density approximation [67]. As such, the simulations
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Figure 11. Density profiles and mode occupancies of the initial thermal equilibrium qua-
sicondensate for γ3/2

0 T = 0.39 (N = 1109) corresponding to the first data point in Fig. 3 of
the main text. The thick solid (blue) line in (a) and (b) corresponds to the cutoff choice of
nmax = 250 in the SPGPE simulations, whereas the upper and lower bounds of the shaded
areas around this curve represent, respectively, the density profiles for nmax = 300 and
nmax = 200. The dashed (yellow) line corresponds to the SPGPE density profile calculated
with the cutoff of nmax = 95. The straight dotted line in (b) shows the ∝1/|x| scaling of the
tails of the density profile expected for an ideal (noninteracting) Bose gas under mode oc-
cupancies of ≫ 1. Panel (c) shows the actual occupancies of high energy modes, for differ-
ent values of nmax. In panel (d), we show the SPGPE density profile (in the region x ≥ 0) for
nmax = 250 and a best-fit density profile obtained using Yang–Yang thermodynamics within
the local density approximation. We note that any such fitting is sensitive to the values of
the chemical potential in the trap centre µ0, or alternatively the total number of atoms N ,
and the temperature T of the system: due to the high-energy cutoff imposed in the SPGPE
approach, matching up the chemical potentials and temperatures in order to obtain the
same peak densities within the two methods leads to a noticeable mismatch in N because
the c-field approach cuts off the tails of the density profile. Using instead the total atom
number N and temperature T as the two fitting parameters (for a given trap frequency),
and noting that both methods are approximate, we obtain a much better overall agreement
between the two profiles. This can be seen in panel (d), where the optimal parameters cor-
respond to a slightly higher Yang–Yang temperature (as shown in the figure legend), but the
corresponding total atom numbers are closer to each other compared to the case of match-
ing up the chemical potentials in the trap centre.
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Figure 12. Same as in Fig. 3 of the main text for ϵ ≃ 0.563 and nmax = 250 (triangles),
except that we also show the extracted data for simulations with nmax = 200 (squares) and
nmax = 300 (circles). The error bars of data points are on the same order of magnitude as in
Fig. 3 and are no longer shown.

in the main text are performed with a cutoff mode occupancy of N cut ≃ 0.31. This cutoff
itself originates from using a maximum number of nmax = 250 harmonic oscillator basis modes
(Hermite–Gauss polynomials). This value of N cut for nmax = 250 is obtained for the smallest
value of the dimensionless parameter γ3/2

0 T ≃ 0.39, which in turn corresponds to the largest
quasicondensate considered (with N = 1109). For all larger values of γ3/2

0 T , the cutoff mode
occupancy resulting from the same nmax = 250 remains essentially the same, reaching the value
N cut ≃ 0.32 for γ3/2

0 T ≃ 1 corresponding to the smallest quasicondensate considered (with
N = 609).

We additionally emphasise that the use of Hermite–Gauss polynomials is known as the most
computationally efficient and optimal basis choice for implementing the SPGPE and projected
GPE simulations [59, 63, 64], compared to the more commonly used plane-wave basis where
additional subtleties arise regarding the optimal choice of the cutoff in momentum space [62].

In Fig. 11 we show the density profiles of the initial thermal equilibrium quasicondensate, for
the smallest value of γ3/2

0 T = 0.39 (largest N = 1109), corresponding to the first data point in
Fig. 3 of the main text. The different profiles are evaluated for four different values of the cutoff
energy Ecut, corresponding to nmax = 95,200,250,300. Figure 11(a) shows the full density profiles,
whereas Fig. 11(b) zooms into the tails of the distributions. While the values of nmax = 200 and 300
are chosen to illustrate small variations (weak cutoff dependence) of the density profiles around
the case with nmax = 250, the lowest value of nmax = 95 is chosen in such a way that it results in
the cutoffmode occupancy of N cut ≃ 0.78 prescribed in Refs. [68–70].

The actual mode occupancies for all four cases are shown in Fig. 11(c) and are evaluated as in
Ref. [63], using diagonalisation of the reduced one-body density matrix in harmonic oscillator
basis. In the diagonalised density matrix, the cutoff mode occupancy (i.e., the occupancy of
the highest energy mode at Ecut) corresponds to the smallest nonzero eigenvalue. As we see,
for all three near-optimum cases of nmax = 200,250,300, the cutoff mode occupancy N cut varies
between N cut = 0.25−0.40. For all these cutoffs, the SPGPE density profiles can be matched up
well with the density profiles calculated using the Yang–Yang thermodynamics; an example of a
profile is shown in Fig. 11(c) for nmax = 250. On the other hand, for nmax ≃ 95 (with N cut ≃ 0.78)
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the density profile lacks any tails, which is physically unrealistic, and it cannot be fitted well with
any Yang–Yang profile. These results justify our choice of nmax ≃ 250 as an optimal cutoff for all
simulation results discussed in the main text.

Furthermore, in Fig. 11(b) we show 1/|x| scaling of the tails of the density profile, expected
under the strict c-field approximation of large (≫ 1) occupancies of all modes, including the
cutoff mode occupancy. Here, in the low-density part of the density profile, the particles can
be treated locally as in an ideal (noninteracting) Bose gas, with the semiclassical distribution
in position-momentum phase space given by ρ(k, x) ≃ kBT /[ħ2k2/2m +mω2

0x2/2]. Integrating
ρ(k, x) over k gives ρtails(x) ≃ 2πkBT /ħω0|x|, which is shown as a straight (in logarithmic scale)
dotted line in Fig. 11(b). As we see, the actual tails of the density profiles calculated using the
c-field SPGPE approach with nmax = {200,250,300} decay faster than the 1/|x| scaling expected
from the “orthodox” c-field approximation. (The faster-than 1/|x| decay is a result of explicit use
of the projector operator in Eq. (1), which we recall is automatically implemented in harmonic
oscillator basis by the finite number of nmax of modes used in the simulations.) This again justifies
our somewhat unorthodox choice of nmax and the corresponding relatively low cutoff mode
occupancy: by allowing for occupancies smaller than one, we are able to faithfully represent the
tails of the density distribution by incorporating regions with sufficiently large |x|. Yet, we are not
penalised by reaching the unphysical 1/|x| scaling, under which the integrated density profile
or its rms width would a priory diverge. Instead, the rms width and the extracted breathing
oscillation frequencies obtained from the SPGPE with a “hard”, projector-imposed cutoff show
only weak cutoff dependence in the optimal range of nmax = 200−300. This can indeed be seen in
Fig. 12, where we show the breathing oscillation frequencies as in Fig. 3 obtained with nmax = 250
(for the case ϵ = 0.563), except that we additionally include the data extracted from simulations
with nmax = 200 and nmax = 300. As we see, the cutoff dependence is relatively weak: changing
nmax from 250 to 200 or 300 results in less than±2.3% difference in the extracted values ofωB1 and
ωB2 (with both curves shifting up or down as the shift in nmax) compared to the values extracted
for nmax = 250.

As a final remark, we mention that all of the observations discussed above with regard to
Fig. 11 remain qualitatively unchanged when we scan the dimensionless parameter γ3/2

0 T from
its smallest to the largest value of γ3/2

0 T ≃ 1, corresponding to the last data point in Fig. 3 of the
main text, or the smallest quasicondensate considered, with N = 609.
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